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____________________________________________________

Chapter 10

POSIX Threads____________________________________________________

POSIX.1c, the POSIX Threads Extension, introduces a robust set of thread facilities to the
POSIX family of standards. These thread facilities enable programmers to create and manage
multiple threads of control within a single POSIX process.

This chapter offers a programmer’s overview of POSIX.1c, which is included in the Single UNIX
Specification, Version 2. It describes the application programming interfaces specified under the
eight threads-related options, and it briefly explains why and how the interfaces may be used.
For each option, an indication of its status within the Single UNIX Specification is given.

10.1 Introduction
Many applications can be designed as a set of cooperating sequential tasks, or threads of
control, each assigned to some specific aspect of the problem being solved. For example, in
realtime control applications, a separate task may be assigned to each sensor and actuator. In
producer-consumer applications, some tasks may be producers, and others may be consumers.
In a file server, each request for service may be handled by a newly spawned task. In many
applications, dedicated tasks may handle background processing, while the main task does the
foreground processing. Other dedicated tasks may await asynchronous events, so that the
main task does not have to be interrupted when the events occur. In parallel-programming
applications, the parallel threads of execution correspond to cooperating sequential tasks, which
may run simultaneously on different processors in a multiprocessor system. In all cases,
effective management of the cooperating sequential tasks is vital to the success of the
application.

In traditional POSIX and UNIX operating systems, a sequential task — that is, thread of control
— corresponds to the process. The process is the basic programming abstraction in these
operating systems. Each process has a distinct address space — access to specific files, I/O
devices, and other computer system resources — and a single thread of control. Resources are
not shared among processes, because the processes, in general, represent different programs
that must be protected from one another. In other words, the process serves not only as a unit
of concurrency, but also as a unit of resource allocation (that is, protection boundary). In these
operating systems, the cooperating sequential task programming paradigm is implemented by
dividing the application into multiple processes.

The problem with the POSIX process model is that the burden of being a unit of resource
allocation makes the process a heavyweight unit of concurrency.1 POSIX.1c addresses this
problem by adding a second level of concurrency to the POSIX process model. In particular, an

__________________

1. Processes are relatively heavyweight in terms of the overhead incurred at process creation and at context switches, due to the
amount of process context that must be established at creation and saved and restored at context switches. Processes are also
heavyweight with respect to communication, since processes can share data only through the explicit use of interprocess
communication mechanisms such as message passing.
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application is allowed to establish concurrent threads of control within a single process. The
threads of control — variously referred to as threads, C threads, pthreads, tasks, or lightweight
processes — share process memory and other resources. Thus, they incur minimal overhead
and can offer efficient, high-performance concurrency. The thread mechanism has been
identified as being particularly important to realtime systems, multiprocessor systems, and Ada
programs using the Ada tasking facility.

POSIX.1c specifies a robust set of thread facilities. In doing so, it introduces new application
program interfaces in the following functional areas:

• Thread management (ISO/IEC 9945-1: 1996 (POSIX-1), §16)

• Thread-specific data (ISO/IEC 9945-1: 1996 (POSIX-1), §17)

• Thread cancellation (ISO/IEC 9945-1: 1996 (POSIX-1), §18)

• Thread synchronization (ISO/IEC 9945-1: 1996 (POSIX-1), §11)

• Thread execution scheduling (ISO/IEC 9945-1: 1996 (POSIX-1), §13.1-13.5)

• Thread synchronization scheduling (ISO/IEC 9945-1: 1996 (POSIX-1), §13.6).

POSIX.1c also amends certain interfaces in POSIX.1 and POSIX.1b:

• Process creation interfaces are amended to work in the presence of threads (ISO/IEC
9945-1: 1996 (POSIX-1), §3.1).

• Signal interfaces are amended to work in the presence of threads (ISO/IEC 9945-1: 1996
(POSIX-1), §3.3).

• Thread creation is introduced as an event notification mechanism (ISO/IEC 9945-1: 1996
(POSIX-1), §3.3).

• All POSIX.1 and POSIX.1b blocking functions are amended to suspend only the calling
thread, instead of the entire process in which the thread is embedded (ISO/IEC 9945-1: 1996
(POSIX-1), §3.5, 6, 11, 14).

• The POSIX.1b blocking functions (that is, semaphore locking, message sending, message
receiving) that were defined in POSIX.1b to use process priorities to resolve contention are
amended to take thread priorities into account (ISO/IEC 9945-1: 1996 (POSIX-1), §11, 15).

• POSIX.1c establishes thread-safe versions of POSIX.1 and C-language functions (ISO/IEC
9945-1: 1996 (POSIX-1), §4, 5, 8, 9).

• POSIX.1c redefines errno in order to make it meaningful in the presence of threads (ISO/IEC
9945-1: 1996 (POSIX-1), §2.4).

POSIX.1c thread facilities are specified as a series of eight options to POSIX.1, as amended by
POSIX.1b. The core facilities are part of the threads option, whose presence in an operating
system implementation is indicated by definition of the symbol _POSIX_THREADS. The
remaining facilities are placed under seven subsidiary options, as illustrated below.
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Option Mandatory POSIX Mandatory UNIX 98
_POSIX_THREAD_SAFE_FUNCTIONS Yes Yes
_POSIX_THREAD_ATTR_STACKADDR No Yes
_POSIX_THREAD_ATTR_STACKSIZE No Yes
_POSIX_THREAD_PROCESS_SHARED No Yes
_POSIX_THREAD_PRIORITY_SCHEDULING No Realtime Threads FG*
_POSIX_THREAD_PRIO_INHERIT No Realtime Threads FG
_POSIX_THREAD_PRIO_PROTECT No Realtime Threads FG

One of these — _POSIX_THREAD_SAFE_FUNCTIONS — is required to be supported
whenever the threads option is supported; the others need not be for POSIX threads
conformance. For conformance to the Single UNIX Specification, Version 2, the threads options
are split so that non-realtime functionality is mandatory, and realtime functionality is grouped into
a single option: the Realtime Threads Feature Group. The facilities described in the following
sections are part of the threads option, unless explicitly described as being part of one of the
above options.

10.2 Thread Management
POSIX.1c introduces interfaces for creating, managing, and terminating threads, where a thread
is defined as follows ISO/IEC 9945-1: 1996 (POSIX-1), §2.2.2):

‘‘A single flow of control within a process. Each thread has its own thread ID, scheduling
priority and policy (if the thread priority scheduling option is used), errno value, thread-
specific key/value bindings, and the required system resources to support a flow of control.
Anything whose address may be determined by a thread ... shall be accessible to all threads
in the same process.’’

Thus, threads share process state, including process address space, as well as other resources
such as files. Threads are identified by thread IDs, which are guaranteed to be unique only
within a process.

Threads have properties referred to as thread attributes associated with them. There is one
mandatory attribute — detachstate — and several optional attributes. The detachstate attribute
governs the lifetime of a thread ID. That is, if a thread is created in a detached state, then its
thread ID loses significance upon termination of the thread; if a thread is created in a joinable
state, then its thread ID can be used as a parameter of the pthread_join( ) function, discussed
below in the list of interfaces.

POSIX.1c specifies two classes of optional thread attributes. The first class is associated with
the POSIX.1c stack options _POSIX_THREAD_ATTR_STACKSIZE and
_POSIX_THREAD_ATTR_STACKADDR, and the second class is associated with the POSIX.1c
thread priority scheduling option _POSIX_THREAD_PRIORITY_SCHEDULING. The stack
attributes are stacksize, which specifies a minimum size for the thread’s stack, and stackaddr,
which specifies the address to be used for the thread’s stack. The stack attributes are
mandatory for conformance to the Single UNIX Specification, Version 2. The scheduling
attributes are discussed in Section 10.6 on page 92.

__________________

* FG is an abbreviation for Feature Group.
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At thread creation, a thread can be assigned default attribute values, or it can be assigned
attribute values as specified in a designated thread attributes object. Thread attributes objects,
which hold the values of thread attributes, are of an opaque data type.2 Accordingly, the
standard defines functions for setting and getting the values of each of the attributes held in
threads attributes objects. In addition, the standard defines functions for setting and getting the
values of selected attributes dynamically. For example, there are functions defined to set and
get the value of the thread detachstate attribute in a specified thread attributes object, but not to
dynamically change the value of the attribute in an existing thread. On the other hand, the
priority of a thread can be assigned a value at thread creation through a thread attributes object,
and, in addition, the priority can be dynamically changed during the execution of a thread.

The attributes object concept is used not only for threads, but also for mutexes and condition
variables. It is intended to support extensibility. Implementations, or future standards, can add
attributes without modifying the interfaces defined in POSIX.1c. They simply add functions for
setting and getting the values of the new attributes in the thread attributes object.

POSIX.1c defines the following specific functions for thread management:

• Initializing a thread attributes object (pthread_attr_init( )); that is, setting all attributes to
default values.

• Destroying a thread attributes object (pthread_attr_destroy( )); that is, rendering it invalid for
use until it is re-initialized. In the POSIX.1c model, a thread attributes object must be
destroyed before it can be re-initialized. The effect of re-initializing a thread attributes object
that has not been destroyed (and is thus still initialized) is undefined.

• Setting or getting the values of the following thread attributes in a specified thread attributes
object: detachstate, stacksize and stackaddr. The functions are
pthread_attr_setdetachstate( ), pthread_attr_getdetachstate( ), pthread_attr_setstacksize( ),
pthread_attr_getstacksize( ), pthread_attr_setstackaddr( ), and pthread_attr_getstackaddr( ).

• Creating a new thread (pthread_create( )), with attributes having either default values or
values given in a specified thread attributes object. Upon creation, the thread starts
executing a specified start routine, with a specified argument. The signal mask of the newly
created thread is inherited from the thread that created it.

The same thread attributes object can be used multiple times to create multiple threads. An
application programmer could also set up multiple thread attributes objects, each with
different attribute values, to be used in creating different classes of threads.

• Obtaining the calling thread’s ID (pthread_self( )).

• Comparing two specified thread IDs (pthread_equal( )).

• Waiting for another thread, specified by its thread ID, to terminate (pthread_join( )). This
function represents one mechanism through which threads can synchronize their execution.
Other synchronization mechanisms include mutexes, condition variables, and signals,

__________________

2. This means that the internal structure of the thread attributes object is purposely unspecified in the standard and, in effect,
hidden from applications; an application can access individual attributes held in the attributes object in a portable way only
through operating system functions. The standard specifies separate operating system functions for each attribute. Therefore,
the addition of a new attribute entails the addition of new operating system functions for accessing the attribute in the thread
attributes object, rather than the re-specification of the data type of the thread attributes object. From this viewpoint, the
opaqueness of the data type is an extensibility mechanism: old applications that can safely ignore the new attribute are
unaffected by the addition of the new functions, whereas they would be affected by a re-specification of the data type of the
thread attributes object (that is, they would have to be recompiled).
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described in Section 10.5 on page 90 and Section 10.9 on page 96.

• Terminating the calling thread (pthread_exit( )).

In addition, POSIX.1c defines a function, pthread_once( ), in support of dynamic package
initialization. The function enables a package, such as a C library, to execute a specified
initialization routine only once within a multi-threaded user process, upon the first invocation of
the package by the process. The function, which would be called from within the package doing
the initialization, is as follows.

Executing a specified initialization routine (pthread_once( )) only once within a process, at its
first invocation. The pthread_once( ) function has two arguments: the initialization routine and a
special-purpose flag. The flag is initialized to a special value in accordance with the standard’s
specification of the pthread_once( ) function.

The motivation, as described in ISO/IEC 9945-1: 1996 (POSIX-1), §B.16.2.8, is that some C-
library routines are set up to execute an initialization routine upon the first invocation of the
library routine by a process. The library routine uses a flag, declared as a static variable, to
indicate whether or not the initialization routine has been executed. The flag is initially set to a
value indicating non-initialized. Then, when the library routine is first invoked by the process, the
library routine checks the flag, finds it set to the non-initialized value, executes the initialization
routine, and finally sets the flag to the initialized value. In subsequent invocations, the library
routine finds the flag set to the initialized value and bypasses the call to the initialization routine.

The problem that arises when a multi-threaded process attempts to use a library routine set up
in this way is that two threads might call the library routine at about the same time and both find
it set to the non-initialized value. That is, the second thread might check the flag before the first
has a chance to change the value to indicate initialized. The solution to this problem entails
providing mutually exclusive access to the code that deals with the flag and the initialization
routine. The pthread_once( ) function, through the use of a special-purpose flag, in effect
implements this solution.

10.3 Thread-specific Data
POSIX.1c provides a mechanism that enables applications to maintain specified data on a per-
thread basis. The mechanism is motivated by the need of some modules (that is, groups of
related functions) to maintain selected data across function invocations (that is, to maintain
static data in the C programming language). If such a module is being used by multiple threads
of a multi-threaded process, then the module may need to maintain such data separately for
each calling thread, depending on the particular application.

For example, consider a module consisting of push, pop, and clear stack functions. Suppose
that the module declares the stack and stack pointer as static data, instead of as function
parameters. If the module is being used in a multi-threaded process, in which each thread
needs its own stack and stack pointer, the module must have a mechanism for maintaining per-
thread stacks and stack pointers.

In the POSIX.1c model, per-thread data is maintained through a key/value mechanism, an
approach designed for efficiency and ease of use.3 A key is an opaque object of type

__________________

3. An application process could maintain thread-specific data in other ways. For example, it could use a hash function on thread ID
as a means of access to an area of thread-specific data. Then the application process would have to manage the use of sub-
areas of the thread-specific data. The POSIX.1c thread-specific data interfaces, on the other hand, provide threads more direct
access to sub-areas of their thread-specific data. Moreover, the sub-areas are independent; different parts of the application
process can use different sub-areas without any need for process-wide cooperation.
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pthread_key_t . The value of a key is thread-specific; that is, each key that has been
established for a multi-threaded process has a distinct value for each thread of the process. For
this reason, the thread-specific data of a process is sometimes thought of as a matrix, with rows
corresponding to keys and columns to threads, although implementations need not work this
way. A process can have up to PTHREAD_KEYS_MAX keys (or rows), where
PTHREAD_KEYS_MAX is at least 128.

Keys are of opaque data type so that operating system implementations can have freedom in
setting them up to offer efficient access to thread-specific data. Instead of holding thread-
specific values directly, keys may hold means of accessing thread-specific values.
Conceptually, a key isolates a row of the thread-specific data matrix, and then the key uses the
thread ID of the calling thread (the thread calling pthread_getspecific( ) or pthread_setspecific( ))
to isolate an entry in the row, thus obtaining the desired key value.

Typically, the value associated with a given key for a given thread is a pointer to memory
dynamically allocated for the exclusive use of the given thread (for example, per-thread stack
and stack pointer). The scenario for establishment and use of thread-specific data can be
described as follows. A module that needs to maintain static data on a per-thread basis creates
a new thread-specific data key as a part of its initialization routine. At initialization, all threads of
the process are assigned null values for the new key. Then, upon each thread’s first invocation
of the module (which can be determined by checking for a null key value), the module
dynamically allocates memory for the exclusive use of the calling thread, and stores a pointer to
the memory as the calling thread’s value of the new key. Upon later invocations of the same
module by the same thread, the module can access the thread’s data through the new key (that
is, the thread’s value for the key). Other modules can independently create other thread-specific
data keys for other per-thread data for their own use.

The interfaces for managing thread-specific data are as follows:

• Creating or deleting a process-wide key to thread-specific data (pthread_key_create( ),
pthread_key_delete( )). At creation, the value of the key is initialized to NULL for all active
threads in the process in which the calling thread is embedded.

At creation, a destructor function optionally can be specified for the key. Upon thread
termination, if the key has a non-NULL value for the terminating thread, the destructor
function is invoked with the key value as its argument. It is envisioned that the destructor
function would be used to release the memory identified by the key value.

• Setting or getting the calling thread’s value of a specified key (pthread_setspecific( ),
pthread_getspecific( )). Note that a thread can access only its own values of any keys,
because there is no thread ID parameter in these functions. When a thread accesses a key,
it implicitly accesses its own value of the key.

viii Threads and the Single UNIX  Specification, Version 2 (Copyright 1997 The Open Group)
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10.4 Thread Cancellation
POSIX.1c provides facilities for canceling threads. The facilities enable a thread to cancel
another specified thread within the same process. The facilities are aimed at allowing
applications to cancel cooperating threads.

A thread that is the target of cancellation must be cooperative in the following sense. Each
thread controls its own cancelability state and type. The cancelability state can be enabled or
disabled. For the enabled state, the type can be asynchronous (cancellation requests accepted
at any time) or deferred (cancellation accepted only at designated cancellation points). By
default, threads are initialized with state enabled and type deferred. An uncooperative thread
could disable cancellation, and thus thwart cancellation requests.

An application is expected to make cancellation graceful by specifying cancellation cleanup
handlers. The cleanup handlers perform actions such as unlocking mutexes owned by the
target thread (the thread being canceled), signaling conditions that the target thread may have
caused to become true, releasing resources, and so on. These actions enable other threads in
the application to make progress after the cancellation occurs.

The thread cancellation facilities specified in POSIX.1c include the following functions:

• Canceling execution of a specified thread (pthread_cancel( )). The cancellation occurs in
accordance with the target thread’s cancelability state and type. If and when cancellation
does occur, cancellation cleanup handlers are invoked in last-in-first-out (LIFO) order,
followed by thread-specific data destructor functions in unspecified order. Then the thread is
terminated.

• Setting the cancelability state of the calling thread (pthread_setcancelstate( )) to either
enabled or disabled.

• Setting the cancelability type of the calling thread (pthread_setcanceltype( )) to either
asynchronous or deferred.

• Creating a cancellation point (pthread_testcancel( )). To designate a point in its execution as
a cancellation point, a thread simply makes a call to the pthread_testcancel( ) function at that
point.

• Establishing cancellation cleanup handlers (pthread_cleanup_push( ) and
pthread_cleanup_pop( )). The pthread_cleanup_push( ) function is used to identify a
specified routine as a cleanup handler. Conceptually, the routine is pushed onto the top of
the calling thread’s cancellation cleanup stack. The pthread_cleanup_pop( ) function is used
to remove and optionally execute the cleanup handler at the top of the cancellation cleanup
stack.

The pthread_cleanup_push( ) and pthread_cleanup_pop( ) functions are used in pairs within
the same lexical scope. For example, a given routine of an application can begin by pushing
a cleanup handler written for the routine onto the cancellation cleanup stack of a calling
thread and end by popping the cleanup handler from the stack. If the routine calls another
routine, the second routine can also begin by pushing a different cleanup handler onto the
stack and end by popping the cleanup handler from the stack. Thus, the most recently
called subroutines have their cleanup handlers at the top of the cancellation cleanup stack.
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10.5 Thread Synchronization
POSIX.1c introduces mutexes and condition variables as inter-thread synchronization
mechanisms. While POSIX.1b semaphores could be used,4 mutexes and condition variables
offer higher performance and enhanced robustness in many cases. As noted in POSIX.1c,
semaphores have two distinct uses: locking and waiting. Mutexes take over the locking role of
semaphores, while condition variables take over the waiting role. That is, the mutex (a term
derived from ‘‘mutual exclusion’’) is a locking mechanism used by threads to ensure mutually
exclusive use of shared data and critical sections of code.5 The condition variable is a waiting
mechanism used to synchronize the executions of threads with respect to higher level actions of
one another.

A condition variable always has a mutex associated with it. The mutex provides mutually
exclusive access to some shared data (for example, a bounded buffer). In a typical scenario, a
thread locks the mutex and then uses a condition variable to wait for some condition (for
example, buffer not full) to become true with respect to the shared data. After using the shared
data, the thread uses another condition variable to signal that it has caused some other
condition (for example, buffer not empty) to become true with respect to the shared data, and
then unlocks the mutex.

Mutexes and condition variables can be applied to the producer-consumer problem as follows.
Suppose a producer and consumer need to coordinate use of a bounded buffer. They can do so
through the use of two condition variables, non-empty and non-full, and a mutex. The mutex
protects the shared resources, namely, the buffer and its attributes (that is, count of
unconsumed characters, producer’s index, consumer’s index). The producer’s execution cycle
is as follows:

1. Produce a data item.

2. Lock the mutex.

3. Check the condition that the count of unconsumed data items in the buffer is less than the
number of slots in the buffer. If the condition is false, wait on the condition variable non-full
(which unlocks the mutex for the duration of the wait) and then repeat the check upon
return from the wait. When the condition is determined to be true, go to step 4.

4. Put a data item in the buffer, and increment both the producer’s index into the buffer and
the count of unconsumed data items in the buffer.

5. If the count of unconsumed data items is now equal to one, inform the consumer by
signaling via the condition variable non-empty. If the consumer was blocked on non-
empty, this signal unblocks it.

6. Unlock the mutex.

The consumer’s execution cycle is complementary.

__________________

4. Mutexes and condition variables can be used only by entities that share memory. While they are introduced primarily as an
inter-thread synchronization mechanism, they can also be used among processes that share memory. Semaphores, on the
other hand, are primarily an interprocess synchronization mechanism, even though they can be used by threads within a
process. Semaphores get around the need for shared memory through global names, which make them accessible to all
processes.

5. Unlike semaphores, mutexes are always unlocked by the entity that locked them. Thus, during the time a mutex is locked, it is
said to be owned by the entity that locked it. Because a mutex has an owner, priority inheritance can be applied to the use of
the mutex as a means of overcoming priority inversion (see Section 10.7 on page 94).
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Both mutexes and condition variables are opaque objects (of types pthread_mutex_t and
pthread_cond_t , respectively), and they use the attributes object concept described above in
Section 10.2 on page 85. Accordingly, the POSIX.1c mutex and condition variable facilities
include the following functions:

• Initializing or destroying a mutex attributes object (pthread_mutexattr_init( ),
pthread_mutexattr_destroy( )). These functions are similar to their counterparts for threads
attributes objects (see Section 10.2 on page 85).

• Setting or getting the value of the mutex attribute pshared in a specified mutex attributes
object. These functions (pthread_mutexattr_setpshared( ), and
pthread_mutexattr_getpshared( )) and the attribute itself are optional. Their presence in an
implementation is indicated by definition of the symbol
_POSIX_THREAD_PROCESS_SHARED. They extend the boundaries within which a mutex
can be used beyond the threads of a single process. In particular, they enable a mutex to be
used by any threads of any processes sharing the memory in which the mutex resides. This
functionality is mandatory for conformance to the Single UNIX Specification, Version 2.

• Initializing a specified mutex (pthread_mutex_init( )), with attributes having either default
values or values given in a specified mutex attributes object. Upon initialization, the mutex is
in an unlocked state.

• Destroying a specified mutex (pthread_mutex_destroy( )); that is, rendering it invalid for
subsequent use in mutex operations other than mutex initialization.

• Initializing or destroying a condition variable attributes object. These functions
(pthread_condattr_init( ), pthread_condattr_destroy( )) are similar to their counterparts for
threads attributes objects and mutexes.

• Setting or getting the value of the condition variable attribute pshared in a specified condition
variable attributes object. These optional functions (pthread_condattr_setpshared( ),
pthread_condattr_getpshared( )) are similar to their counterparts for mutexes. This
functionality is mandatory for conformance to the Single UNIX Specification, Version 2.

• Initializing or destroying a specified condition variable. These functions (pthread_cond_init( ),
pthread_cond_destroy( )) are similar to their counterparts for mutexes.

The mutex functions defined by POSIX.1c are as follows:

• Locking a specified mutex. Two forms of interfaces are provided. The first,
pthread_mutex_lock( ), causes the calling thread to block if the mutex is already locked. The
second, pthread_mutex_trylock( ), is a conditional form. That is, it locks the mutex only if the
mutex is currently unlocked; otherwise, it simply returns control to the calling thread. In no
case does pthread_mutex_trylock( ) block the caller. In other words,
pthread_mutex_trylock( ) polls the mutex.

Contention for mutexes is resolved according to the scheduling attributes of the calling
threads, described in Section 10.6 on page 92.

When a thread acquires a lock on a mutex, it is said to become the owner of the mutex.

• Unlocking a specified mutex. This function (pthread_mutex_unlock( )) is called by the owner
of a mutex to release the mutex.

The condition variable functions defined by POSIX.1c are:

• Blocking on a specified condition variable, under the protection of a specified mutex
(pthread_cond_wait( )). Typically, prior to invoking the wait operation, the calling thread shall
have locked the mutex, examined the condition associated with the condition variable by
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querying shared data, and found the condition to be false. The invocation of the wait
operation then causes the calling thread both to release the mutex and to block on the
condition variable, the release and block being done atomically.

Upon return from the wait operation, the calling thread owns the mutex and can check the
condition. If the condition is true, the thread can unlock the mutex and proceed. If the
condition is false, the thread can simply repeat the wait operation.

A timeout can be associated with the wait operation through the use of the
pthread_cond_timedwait( ) function.

• Unblocking a thread or threads blocked on a specified condition variable. Two functions are
provided: pthread_cond_signal( ) for unblocking at least one blocked thread (if any are
blocked), and pthread_cond_broadcast( ) for unblocking all blocked threads.

The order in which threads are unblocked depends on the scheduling attributes of the
threads, particularly priority.

POSIX.1c also amends the POSIX.1b semaphore interfaces. As indicated in Section 10.11 on
page 98, it amends the sem_wait( ) function to suspend only the calling thread, and it amends
the sem_wait( ) and sem_post( ) functions to take thread priorities into account in the resolution
of contention for semaphores. In addition, it introduces an optimization feature: if a semaphore
is initialized with a pshared argument of zero, then the semaphore is to be used as an inter-
thread (versus interprocess) synchronization mechanism, and the operating system
implementation can potentially optimize its performance. If an application tries to use a
semaphore whose pshared argument is zero for interprocess synchronization, the effect is
undefined in the standard.

10.6 Thread Execution Scheduling
POSIX.1c defines thread priority scheduling facilities as an option, designated by the symbol
_POSIX_THREAD_PRIORITY_SCHEDULING, modeled on the POSIX.1b process priority
scheduling option. However, the thread scheduling facilities, unlike the process scheduling
facilities, use the attributes object concept, previously described in Section 10.2 on page 85.
For conformance to the Single UNIX Specification, Version 2, this functionality is supported if the
implementation provides the Realtime Threads Feature Group.

In particular, the thread scheduling facilities add the following attributes to the thread attributes
object:

• Scheduling contention scope (contentionscope). The contention scope may be process-wide
or system-wide.6 If a thread has process-wide contention scope, it directly contends for
processor resources only with other threads in its same process. If a thread has system-
wide contention scope, it contends for processor resources with all threads in the system,
according to their system-level scheduling attributes.

For threads with system-wide contention scope, their system-level scheduling attributes are
equal to their thread scheduling attributes. For threads with process-wide contention scope,
their system-level scheduling attributes are derived from their thread and process scheduling

__________________

6. System-wide means across an implementation of a POSIX operating system, which is generally assumed to reside on a
uniprocessor or a multiprocessor. (System-wide does not mean across autonomous systems inter-connected by a local area
network.)
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attributes using an implementation-dependent mapping. Thus, a thread with process-wide
contention scope indirectly contends for processor resources with threads of system-wide
scheduling scope.

• Scheduling policy (schedpolicy). The policies are the same as those specified for processes
in POSIX.1b:

1. preemptive, dynamic-priority-driven, using FIFO contention resolution within a priority
level (SCHED_FIFO)7

2. preemptive, dynamic-priority-driven, using round robin contention resolution within a
priority level (SCHED_RR)

3. implementation-dependent (SCHED_OTHER).

The SCHED_FIFO and SCHED_RR policies are affected by the scheduling allocation
domains of threads, where the scheduling allocation domain (also known as processor
affinity) of a thread is defined to be the set of processors on which the thread can be
scheduled at any given time. In particular, these policies are guaranteed to resolve
contention as described in the preceding paragraph only in the case of allocation domains of
size one. For allocation domains of size greater than one, POSIX.1c does not mandate a
standard definition of the operation of these policies; instead, these policies operate in an
implementation-dependent manner.

• Scheduling parameters (schedparam, a pointer to a structure). The SCHED_FIFO and
SCHED_RR policies have a single parameter (that is, priority); the SCHED_OTHER policy
has implementation-dependent parameters.

• Scheduling attributes inheritance flag (inheritsched). This attribute indicates whether the
other scheduling attributes of a thread should be inherited8 from the creating thread, or set to
the values specified in the thread attributes object being used to create the thread.

For each of the attributes, POSIX.1c defines functions for setting and getting the value of the
attribute in a specified thread attributes object (that is, pthread_attr_setscope( ),
pthread_attr_getscope( ), pthread_attr_setschedpolicy( ), pthread_attr_getschedpolicy( ),
pthread_attr_setschedparam( ), pthread_attr_getschedparam( ), pthread_attr_setinheritsched( ),
pthread_attr_getinheritsched( )). For selected attributes — that is, the scheduling policy and
associated parameters — the standard also defines functions for dynamically setting and getting
the value of the attribute in a specified thread (pthread_setschedparam( ),
pthread_getschedparam( )).9 The values of the other attributes (contentionscope and
inheritsched) cannot be changed after thread creation. POSIX.1c also introduces a function
modeled on the POSIX.1b sched_yield( ) function. The function, pthread_yield( ), causes the
calling thread to relinquish control of the processor. Additionally, the sched_yield( ) function
itself is amended to refer to the calling thread, as opposed to the calling process. The

__________________

7. The rate monotonic scheduling policy [Liu and Layland 73; Sha and Goodenough 90; Sha and Sathaye 93] can be used as the
method of assigning priorities to periodic threads in a periodic system. It assigns higher priorities to threads with shorter periods.

8. Here, the priority of a thread can be inherited from its creating thread. It should be noted that the term priority inheritance is not
used in reference to this type of inheritance. As described in Section 10.7 on page 94, priority inheritance refers to the case in
which a given thread inherits the priority of a higher-priority thread that the given thread is blocking by holding a resource such as
a mutex, the intention being to prevent priority inversion.

9. This function changes the scheduling policy and parameters atomically, so that threads always maintain a consistent state with
respect to scheduling. Changing the policy alone, or changing some but not all parameters, would leave the thread in an
incomplete, incoherent, or undesired state. For example, suppose that a (valid) priority scheduling policy is specified, but an
invalid scheduling priority is specified. Then, the pthread_setschedparam( ) function should fail.
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pthread_yield( ) function is added, because the _POSIX_THREAD_PRIORITY_SCHEDULING
option may be supported in the absence of _POSIX_PRIORITY_SCHEDULING, in which case
the sched_yield( ) function would not be available.

10.7 Thread Synchronization Scheduling
POSIX.1c addresses priority inversion (a thread of high priority being blocked by one or more
threads of lower priority), through optional synchronization scheduling facilities.10 For
conformance to the Single UNIX Specification, Version 2, this functionality is supported if the
implementation provides the Realtime Threads Feature Group.

The prototypical example of priority inversion is the following scenario:

1. A low priority thread locks a mutex m.

2. A high priority thread preempts the low priority thread and attempts to lock the mutex m,
but blocks because the mutex is already locked by the low priority thread.

3. The low priority thread resumes execution but is immediately preempted by a medium
priority thread. This causes priority inversion: the high priority thread is being delayed by
lower priority threads. The priority inversion can be unbounded if, for example, medium
priority threads continue to arrive.

A proven mechanism for bounding priority inversion is priority inheritance, which causes a
thread blocking higher priority threads to execute at the priority of the highest-priority blocked
thread. In the above example, priority inheritance would cause the low priority thread to inherit
the high priority of the thread being blocked on the mutex lock operation, and would
consequently reduce the period of priority inversion caused by the low priority thread to the
duration of the critical section that the low priority thread is executing under the protection of the
mutex. However, other low priority threads could be holding other mutexes required by the high
priority thread, leading to an extended period of priority inversion, namely, a chain of blocking of
duration equal to the sum of the lengths of all the critical sections in the chain. Basic priority
inheritance can be extended, through priority ceiling protocols, to address this problem (Sha and
Goodenough 90; Sha et al. 90).

POSIX.1c specifies the basic priority inheritance protocol under the option
_POSIX_THREAD_PRIO_INHERIT. It specifies the priority ceiling protocol emulation, an
efficiently implementable variant of the original priority ceiling protocol, under the option
_POSIX_THREAD_PRIO_PROTECT. The facilities use the mutex attributes object, adding the
following attributes:

• Mutex protocol (protocol). The protocol indicates whether the mutex should be used with:

1. the basic priority inheritance protocol

2. the priority ceiling protocol emulation

__________________

10. Priority inversion is a problem associated with realtime systems. It is not generally regarded as a serious problem in non-
realtime systems for two main reasons. First, non-realtime systems have fairness, throughput, and average response time as
measures of merit. The lengthening of a single response time is not considered to be a disaster in non-realtime systems,
whereas in realtime systems it can lead to a missed deadline and ultimately failure of the mission. Second, fairness-based
schedulers typically employ various mechanisms to ensure the forward progress of all processes and threads, albeit slowly, so
the inversion eventually resolves itself.
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3. no priority inheritance protocol.

• Mutex priority ceiling (prioceiling). If the priority ceiling protocol emulation is specified, then a
priority ceiling needs to be specified. The priority ceiling of a mutex is the priority of the
highest-priority thread that ever locks it. (The application developer knows which thread,
because the developer assigns priorities to threads and also determines which threads use
which mutexes for synchronization). Under the priority ceiling protocol emulation, a thread
executes a critical section at a priority equal to the highest priority ceiling of all the mutexes it
owns at the time of entry to the critical section. The use of the priority ceiling protocol
emulation eliminates chained blocking, reducing the period of priority inversion to the length
of at most one critical section.

For each of these attributes, POSIX.1c defines functions for setting and getting the value of the
attribute in a specified mutex attributes object (pthread_mutexattr_setprotocol( ),
pthread_mutexattr_getprotocol( ), pthread_mutexattr_setprioceiling( ),
pthread_mutexattr_getprioceiling( )). The mutex attributes object can be used at mutex
initialization time to initialize the attributes of a mutex to specified values. Furthermore, the
standard defines functions for dynamically changing and examining the priority ceiling of a
specified mutex (pthread_mutex_setprioceiling( ) and pthread_mutex_getprioceiling( )). These
functions can be used to alter the priority ceilings of mutexes when the priorities of the threads
that use them are changed (for example, when a realtime system changes mode, to move from
one phase of a mission to another).

10.8 Process Creation
POSIX.1c amends the process creation facilities of POSIX.1. In particular, it specifies how the
process creation functions behave in the case of multi-threaded processes.

It should be recalled that in POSIX.1, process creation is achieved through the fork( ) and
exec( ) functions. The fork( ) function is used to create a child process, whose process image is
identical to the parent process image, with the exception of a few attributes, such as process ID,
parent process ID, and accumulated user and system CPU times. Upon successful completion
of the fork( ) function, both the parent process and the child process resume execution at the
point following the return from fork( ). Typically, a conditional statement follows the call to fork( );
the conditional statement specifies one action for the parent and another for the child. If the
child process is intended to run a different program, its action is to call one of the exec( )
functions to replace its current process image with a new process image from a specified
executable file. On the other hand, if the child process is intended to serve as a new thread of
control within the same program, then it simply continues executing its original process image.

POSIX.1c amends the fork( ) and exec( ) functions as follows:

• The fork( ) function is required to create a single-threaded process; when called from within a
multi-threaded process, only one thread — the calling thread — is replicated in the child
process.

• When called from within a multi-threaded process, the exec( ) functions cause all threads of
the calling process to be terminated, and the specified executable file to be loaded and made
ready for execution.

In addition, POSIX.1c introduces the following function:

• Registration of fork handlers (pthread_atfork( )). The fork handlers are routines that are to
be executed in association with calls to the fork( ) function. There are three classes of fork
handlers: prepare, parent, and child. Prepare fork handlers are executed prior to fork( )
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processing, in the context of the calling thread. Parent fork handlers are executed upon
completion of fork( ) processing in the parent, again in the context of the calling thread. Child
fork handlers are executed upon completion of fork() processing in the child, in the context of
the single thread initially existing in the child process.

Fork handlers are envisioned as a mechanism for dealing with the problem of orphaned
mutexes that can occur when a multi-threaded process calls fork( ). The problem arises
when threads other than the calling thread own mutexes at the time of the call to fork( ).
Since the non-calling threads are not replicated in the child process, the child process is
created with mutexes locked by non-existent threads. These mutexes can therefore never
be unlocked.

Fork handlers are intended to resolve the problem of orphaned mutexes in the following way.
Prepare fork handlers can be written to lock all mutexes. In this way, orphaned mutexes are
avoided, and the resources protected by the mutexes are not left in inconsistent states. This
is due to the fact that the calling thread itself, which is replicated in the child process, has
locked all mutexes. Thus, both the parent and child processes have all mutexes locked upon
completion of fork( ) processing, at which time the parent and child fork handlers execute.
The parent and child fork handlers unlock mutexes locked by the prepare fork handler.

Fork handlers are especially useful in enabling independently-developed libraries and
application programs to protect themselves from one another. A multi-threaded library can
protect itself from application programs that issue fork( ) operations, possibly without even
knowing that the library is multi-threaded, by providing fork handlers. Similarly, an
application program can protect itself from fork( ) operations issued by library functions.

10.9 Signal Interfaces
Signals are the mechanism for notifying processes of POSIX.1 events such as keyboard
interrupts, timer expirations, floating point overflows, invalid hardware instructions and invalid
memory references, as well as POSIX.1b events such as asynchronous I/O completion, timer
expiration, and message arrival. Signals are also used for limited interprocess communication;
a process can send a specified signal (for example, terminate, stop, continue, or application-
defined in the case of POSIX.1b realtime signals) to a specified process.

POSIX.1c specifies how signals behave in a multi-threaded process. In particular, it amends the
POSIX.1 signal facilities, as amended by POSIX.1b, as follows:

• At generation, a signal is associated with either:

1. the process, or

2. a specific thread within the process.

As stated in ISO/IEC 9945-1: 1996 (POSIX-1), §3.3.1.2:

‘‘Signals that are generated by some action attributable to a particular thread, such as a
hardware fault, shall be generated for the thread that caused the signal to be generated.
Signals that are generated in association with a process ID or process group ID or an
asynchronous event such as terminal activity shall be generated for the process.’’

Timer expirations represent another class of asynchronous events.11 In keeping with the
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POSIX.1c signal model quoted above, in which signals denoting asynchronous events are
generated for the process, the signals stemming from POSIX.1b timer expirations are left
intact by POSIX.1c. In other words, the signals are generated for the process, and not for
the thread that created the timer. Moreover, POSIX.1c clarifies the POSIX.1 alarm( )
function by specifying that the SIGALRM signal is generated for the process, and not for the
thread that called alarm( ).12

• Signal masks are maintained on a per-thread basis. Thus, each thread of a multi-threaded
process can independently specify which signals are to be blocked from delivery to it. A new
function (pthread_sigmask( )) is defined for examining and changing the signal mask of a
thread within a multi-threaded process. The interface is modeled on the POSIX.1 interface
sigprocmask( ), whose behavior is declared by POSIX.1c to be unspecified in a multi-
threaded process.

• However, in the interest of minimality and efficiency, the action to be taken upon delivery of a
signal is specified on a process-wide basis as being one of the following: take the default
action associated with the signal, ignore the signal, or execute a specified signal-catching
function.

• Also in the interest of minimality and efficiency, signals are not delivered to multiple threads.
POSIX.1 signals are delivered to at most one thread; POSIX.1b signals are delivered to
exactly one thread.13 If a signal was generated for a specific thread, then it is sent to that
thread. If a signal was generated for the process, then it is sent to one thread of the
process. The choice of thread is unspecified in POSIX.1c; implementations are free to
deliver the signal to any eligible thread. An application can reduce the set of eligible threads
to one specific thread through signal masks. The thread that receives the signal can then
distribute the signal to the pertinent thread(s); for example, via condition variables or the
pthread_kill( ) function (described below in the list of new functions).

• Whenever a signal with a specified signal action of terminate, stop, or continue is delivered
to a thread, the signal action applies not just to the target thread, but to the entire process in
which the thread is embedded. That is, all the threads of the process are terminated,
stopped, or continued, in accordance with the specified signal action. This means that
single-threaded programs may be rewritten as multi-threaded programs without their
externally visible signal behavior changing.

• The POSIX.1 function sigpending( ) is amended to apply to signals pending for either the
process or the calling thread.

• The POSIX.1 function sigsuspend( ) is amended to suspend only the calling thread.

• The POSIX.1b functions sigwaitinfo( ) and sigtimedwait( ) are amended to suspend only the
calling thread. POSIX.1c also introduces the following functions:

__________________

11. An asynchronous event is simply an event whose time of occurrence is not tied to a specific point in the instruction sequence of
a program.

12. Signals resulting from multiple invocations of the alarm( ) function are indistinguishable. Thus, the alarm( ) function cannot easily
be used in a multi-threaded process, unless only one of the threads uses the alarm( ) function. On the other hand, signals
indicating the expirations of POSIX.1b timers can be distinguished — when used in conjunction with POSIX.1b realtime signals
— through the assignment of unique signal numbers or unique signal values to the realtime signals associated with the timers.

13. Recall that in the case of a single-threaded process, POSIX.1 signals are delivered at most once (some may be lost), whereas
POSIX.1b realtime signals are delivered exactly once (they are queued, rather than overwritten).
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— Examining and changing the signal mask of a thread within a multi-threaded process
(pthread_sigmask( ), which was mentioned above in the discussion on signal masks).

— Waiting for a signal from a specified set of signals to become pending (sigwait( )). The
idea is that a thread would use its signal mask to block asynchronous delivery of signals
and then use this function to poll for occurrences of the events represented by the
signals.

When more than one thread is using sigwait( ) to wait for the same signal, only one
thread returns from sigwait( ) when the signal becomes pending. The choice of thread is
unspecified in POSIX.1c.

— Sending a specified signal to a specified thread (pthread_kill( )).14

10.10 Thread Creation
POSIX.1c introduces a new event notification mechanism, based on thread creation. It does so
by extending the POSIX.1b realtime signal facilities to enable a process to designate thread
creation (in particular, execution of a specified notification function within a newly created
thread) as a notification mechanism for a specified event (designated by a realtime signal
number). The notification function is invoked with the signal value generated at the time of the
event as an input parameter.

10.11 Blocking Functions
POSIX.1c amends POSIX.1 and POSIX.1b to ensure that all blocking functions suspend only
the calling thread, and not the entire process in which the thread is embedded. The functions
that are explicitly amended include the following:

• POSIX.1 functions wait( ) and waitpid( ) (ISO/IEC 9945-1: 1996 (POSIX-1), §3.2)

• POSIX.1 function sigsuspend( ) and POSIX.1b functions sigwaitinfo( ) and sigtimedwait( )
(ISO/IEC 9945-1: 1996 (POSIX-1), §3.3)15

• POSIX.1 functions pause( ) and sleep( ) (ISO/IEC 9945-1: 1996 (POSIX-1), §3.4)

• POSIX.1 function open( ) (ISO/IEC 9945-1: 1996 (POSIX-1), §5)

• POSIX.1 functions read( ), write( ), fcntl( ) (when the command argument F_SETLKW is
used), and POSIX.1b functions lio_listio( ) (when the synchronization option LIO_WAIT is
used) and aio_suspend( ) (ISO/IEC 9945-1: 1996 (POSIX-1), §6)

• POSIX.1b function sem_wait( ) (ISO/IEC 9945-1: 1996 (POSIX-1), §11)

• POSIX.1b function nanosleep( ) (ISO/IEC 9945-1: 1996 (POSIX-1), §14).

The IEEE PASC Realtime Working Group16 did not find it necessary to explicitly amend all

__________________

14. The name pthread_kill( ) is used to denote the similarity of this function to the POSIX.1 kill( ) function, which is the general
interface used to send a signal to a process. Both are misnamed, because only certain signals, sent under certain conditions,
cause the termination of the thread or process.

15. Previously noted in Section 10.9 on page 96. Repeated here for completeness.

16. This working group was originally designated the IEEE P1003.4 Working Group, and is now a subgroup of the larger IEEE PASC
System Services Working Group (SSWG). It is sometimes referred to as SSWG-RT.
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POSIX.1 and POSIX.1b blocking functions, due to the wording used in the descriptions of some
of the functions. That is, some of the descriptions do not state that the calling process blocks;
instead, they state that the function call blocks. For example, the mqsend( ) function
specification states the following (POSIX.1b, §5.2.4.2):

‘‘If the specified message queue is full ... mq_send( ) shall block until space becomes
available to enqueue the message ...’’

POSIX.1c amends selected POSIX.1b functions to use thread priorities, if applicable, in the
resolution of resource contention. The selected functions are those that were defined in
POSIX.1b to use process priorities for resolving resource contention:

• sem_wait( ) and sem_post( ) (ISO/IEC 9945-1: 1996 (POSIX-1), §11.2.6-11.2.7)

• mq_send( ) and mq_receive( ) (ISO/IEC 9945-1: 1996 (POSIX-1), §15.2.4-15.2.5).

As in POSIX.1b, the focus of POSIX.1c is on processor scheduling, in part to minimize the
impact on existing standards (that is, POSIX.1), as well as existing implementations, which
typically do not depend on priorities for resolving all resource contention. This is why only
selected functions are mandated to use process and/or thread priorities in resolving resource
contention.

10.12 Thread-safe POSIX.1 and C-language Functions
POSIX.1 and C-language functions were written to work in an environment of single-threaded
processes. Reentrancy was not an issue in their design: the possibility of a process attempting
to re-enter a function through concurrent invocations was not considered, because threads —
the enabler of concurrency within a process — were not anticipated.

So, as it turns out, some POSIX.1 and C-language functions are inherently non-reentrant with
respect to threads; that is, their interface specifications preclude reentrancy.17 For example,
some functions (such as asctime( )) return a pointer to a result stored in memory space
allocated by the function on a per-process basis. Such a function is non-reentrant, because its
result can be overwritten by successive invocations. Other POSIX.1 and C-language functions,
while not inherently non-reentrant, may be implemented in ways that lead to non-reentrancy.
For example, some functions (such as rand( )) store state information (such as a seed value,
which survives multiple function invocations) in memory space allocated by the function on a
per-process basis. The implementation of such a function is non-reentrant if the implementation
fails to synchronize invocations of the function and thus fails to protect the state information.
The problem is that when the state information is not protected, concurrent invocations can
interfere with one another (for example, see the same seed value).

Functions must be reentrant in an environment of multi-threaded processes, in order to ensure
that they can be safely invoked by concurrently executing threads. POSIX.1c takes three
actions in the pursuit of reentrancy. First, POSIX.1c imposes reentrancy as a general rule: all
functions, unless explicitly singled out as exceptions to the rule, must be implemented in a way
that preserves reentrancy. Second, POSIX.1c redefines errno, as described below in Section
10.13 on page 102. Third, for those functions whose interface specifications preclude

__________________

17. In POSIX.1c, a reentrant function is defined as a ‘‘function whose effect, when called by two or more threads, is guaranteed to
be as if the threads each executed the function one after another in an undefined order, even if the actual execution is
interleaved’’ (ISO/IEC 9945-1: 1996 (POSIX-1), §2.2.2).
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reentrancy, POSIX.1c defines alternative reentrant versions as follows:

• As previously noted, some functions are non-reentrant because they return results in per-
process library-allocated structures that may be static and thus subject to overwriting by
successive calls. These include:

— The POSIX.1 process environment functions getlogin( ) and ttyname( ) (see ISO/IEC
9945-1: 1996 (POSIX-1), §4.2.4 and 4.7.2)

— The C-language functions asctime( ), ctime( ), gmtime( ), and localtime( ) (see ISO/IEC
9945-1: 1996 (POSIX-1), §8.3.4 to 8.3.7)

— The POSIX.1 system database functions getgrgid( ), getgrnam( ), getpwuid( ), and
getpwnam( ) (see ISO/IEC 9945-1: 1996 (POSIX-1), §9.2.1 and 9.2.2).

POSIX.1c defines reentrant versions of these functions; the new functions have _r appended
to the function names (for example, asctime_r( )). To achieve reentrancy, the new _r
functions replace library-allocated structures with application-allocated structures that are
passed as arguments to the functions at invocation.

• Some functions can be reentrant or non-reentrant, depending on their arguments. These
include the C-language function tmpnam( ) and the POSIX.1 process environment function
ctermid( ). These functions have pointers to character strings as arguments. If the pointers
are not NULL, the functions store their results in the character string; however, if the pointers
are NULL, the functions store their results in an area that may be static and thus subject to
overwriting by successive calls.

To ensure reentrancy of these functions, POSIX.1c simply restricts their arguments to non-
NULL (ISO/IEC 9945-1: 1996 (POSIX-1), §4.7.1 and 8.2.5).

• As previously noted, some functions are non-reentrant because they communicate across
multiple function invocations by maintaining state information in static library-allocated
storage, which is shared by all the threads of a process, possibly without the benefit of
synchronization. These include the C-language function rand( ), which is used to generate a
process-wide pseudorandom number sequence. The function rand( ), which is called with no
arguments, returns the next pseudorandom number in a sequence determined by an initial
seed value (set via the function srand( )). As a side effect, the function rand( ) updates the
seed value, enabling the sequence to progress. The seed value is held in a library-allocated
static memory location. In a multi-threaded process, two or more threads might concurrently
invoke rand( ), read the same seed value, and thus acquire the same pseudorandom
number.

POSIX.1c defines a reentrant version, rand_r( ), of this function (ISO/IEC 9945-1: 1996
(POSIX-1), §8.3.3). To ensure reentrancy, the rand_r( ) function is required to synchronize
(that is, serialize) calls to itself, so that a thread is forced to finish acquiring one
pseudorandom number in a sequence before another thread can begin to acquire the next
number in the sequence.

In addition to reentrancy, the rand_r( ) function offers applications flexibility in generating
pseudorandom number sequences. It does so through the introduction of an argument: a
pointer to an application-supplied memory location that is used to hold the seed value. As
indicated above, an application can use rand_r( ) to generate a reliable process-wide
pseudorandom number sequence (that is, a sequence without replicates). Alternatively, an
application can use rand_r( ) to generate per-thread pseudorandom number sequences, by
having each thread use a distinct seed as its rand_r( ) argument. In fact, an application can
use rand_r( ) to generate an arbitrary number of uncorrelated sequences of pseudorandom
numbers (each sequence governed by a distinct seed), which could prove to be useful in
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Monte Carlo simulations and other similar applications.

Other functions in this class include:

— The C-language function strtok( ) (see ISO/IEC 9945-1: 1996 (POSIX-1), §8.3.3), which is
used to find the next token in a string.

— The POSIX.1 file and directory function readdir( ), which is used to read the next entry in
a directory stream. Note that this function also suffers from the problem of returning its
result in a library-allocated structure. Both deficiencies are resolved in the reentrant
version readdir_r( ) (ISO/IEC 9945-1: 1996 (POSIX-1), §5.1.2).

• The POSIX.1 and C-language functions that operate on character streams (represented by
pointers to objects of type FILE) are required by POSIX.1c to be implemented in such a way
that reentrancy is achieved (see ISO/IEC 9945-1: 1996 (POSIX-1), §8.2). This requirement
has a drawback; it imposes substantial performance penalties because of the
synchronization that must be built into the implementations of the functions for the sake of
reentrancy. POSIX.1c addresses this tradeoff between reentrancy (safety) and performance
by introducing high-performance, but non-reentrant (potentially unsafe), versions of the
following C-language standard I/O functions: getc( ), getchar( ), putc( ), and putchar( ). The
non-reentrant versions are named getc_unlocked( ), and so on, to stress their unsafeness.

To make it possible for multi-threaded applications to use the non-reentrant versions of the
standard I/O functions safely, POSIX.1c introduces the following character stream locking
functions: flockfile( ), ftrylockfile( ), and funlockfile( ). An application thread can use these
functions to ensure that a sequence of I/O operations on a given character stream is
executed as a unit (without interference from other threads).18

As stated in the description of the character stream locking functions, all standard I/O
functions that reference character streams shall behave as if they use flockfile( ) and
funlockfile( ) internally to obtain ownership of the character streams. Thus, when an
application thread locks a character stream, the standard I/O functions cannot be used by
other threads to operate on the character stream until the thread holding the lock releases it.

The specifications introduced by POSIX.1c for the purpose of ensuring reentrancy of POSIX.1
and C-language functions are mandatory for operating system implementations that support
threads. They are optional for implementations that do not support threads. This is
accomplished in the standard by associating the reentrancy specifications with a separate
option, _POSIX_THREAD_SAFE_FUNCTIONS, which is declared to be mandatory for
implementations supporting the threads option. Accordingly, this option is mandatory for
conformance to the Single UNIX Specification, Version 2.

__________________

18. It should be noted that the flockfile( ) function, like the pthread_mutex_lock( ) function, can lead to priority inversion. The
application developer should take this into account when designing an application and analyzing its performance.
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10.13 Redefinition of errno
In POSIX.1, errno is defined as an external global variable. But this definition is unacceptable in
a multi-threaded environment, because its use can result in non-deterministic results. The
problem is that two or more threads can encounter errors, all causing the same errno to be set.
Under these circumstances, a thread might end up checking errno after it has already been
updated by another thread.

To circumvent the resulting non-determinism, POSIX.1c redefines errno as a service that can
access the per-thread error number as follows (ISO/IEC 9945-1: 1996 (POSIX-1), §2.4):

‘‘Some functions may provide the error number in a variable accessed through the symbol
errno. The symbol errno is defined by including the header <errno.h> , as specified by the
ISO C standard ... For each thread of a process, the value of errno shall not be affected by
function calls or assignments to errno by other threads.’’

In addition, all POSIX.1c functions avoid using errno and, instead, return the error number
directly as the function return value, with a return value of zero indicating that no error was
detected. This strategy is, in fact, being followed on a POSIX-wide basis for all new functions.
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Chapter 11

X/Open Threads____________________________________________________

System Interfaces and Headers, Issue 5 (XSH) includes the threads model and interfaces
defined in IEEE Std 1003.1c-1995 together with a number of extensions. These extensions,
based on widely accepted existing industry practice, were developed by the Aspen Group and
submitted to X/Open. This chapter is a brief introduction to these extensions. It assumes a
working knowledge of the threads model specified in POSIX.1c and threads programming
concepts in general.

11.1 Introduction
The X/Open Threads Extension is built upon the threads model and interfaces defined in
IEEE Std 1003.1c-1995, commonly known as POSIX.1c or Pthreads. POSIX.1c contains much
optional functionality. When POSIX.1c was incorporated into XSH, Issue 5, the majority of the
POSIX.1c optional functionality was made mandatory and additional functionality, known as the
Aspen threads extensions, was incorporated at the request of the Aspen Group.

11.2 The Aspen Group
Over the past few years almost all UNIX system vendors implemented some flavor of a threads
package based on the POSIX.1c interfaces. Each vendor found that the POSIX.1c interfaces
were not complete in solving all their threads requirements. Consequently, each vendor
implemented extensions to their thread packages to meet those requirements.

Unfortunately for application developers, not all vendors implemented the same exact set of
extensions. To make things worse, the same functionality was added, but used different
interface names or parameter sets. In short, this resulted in proprietary threads interfaces that
are not portable across implementations, yet certain applications, such as database engines,
were making heavy use of these proprietary interfaces.

Fortunately, many of the threads extensions developed were general enough that they are easily
supported on any UNIX system threads implementation. In late 1995, the Aspen Group formed
a subgroup to standardize the interfaces and functionality of the common thread extensions that
various UNIX system vendors had implemented. The threads extensions that came out of this
work by the Aspen Group comprise extensions that were made for OSF DCE 1.0 as well as
others by Sun, HP, and Digital. The Aspen Group handed the completed work over to X/Open
in 1996 as input to the next issue of XSH.

The following extensions to POSIX.1c were agreed by the Aspen Group:

• extended mutex attribute types

• read-write locks and attributes

• thread concurrency level
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• thread stack guard size

• parallel I/O.

A total of 19 new functions were specified.

The Aspen Group carefully followed the threads programming model specified in POSIX.1c
when developing these extensions. As with POSIX.1c all the new functions return zero if
successful, otherwise an error number is returned to indicate the error.

The concept of attribute objects was introduced in POSIX.1c to allow implementations to extend
the standard without changing the existing interfaces. Attribute objects were defined for
threads, mutexes, and condition variables. Attributes objects are defined as implementation-
dependent opaque types to aid extensibility, and functions are defined to allow attributes to be
set or retrieved. The Aspen Group followed this model when adding the new type attribute of
pthread_mutexattr_t or the new read-write lock attributes object pthread_rwlockattr_t .

11.3 Extended Mutex Attributes
POSIX.1c defines a mutex attributes object as an implementation-dependent opaque object of
type pthread_mutexattr_t , and specifies a number of attributes which this object must have and
a number of functions which manipulate these attributes. These attributes include detachstate,
inheritsched, schedparm, schedpolicy, contentionscope, stackaddr, and stacksize.

XSH, Issue 5 specifies another mutex attribute called type. The type attribute allows
applications to specify the behavior of mutex locking operations in situations where the
POSIX.1c behavior is undefined. The OSF DCE threads implementation, based on Draft 4 of
POSIX.1c, specified a similar attribute. Note that the names of the attributes have changed
somewhat from the OSF DCE threads implementation.

XSH, Issue 5 also extends the specification of the following POSIX.1c functions which
manipulate mutexes:

pthread_mutex_lock( )
pthread_mutex_trylock( )
pthread_mutex_unlock( )

to take account of the new mutex attribute type and to specify behavior which was declared as
undefined in POSIX.1c. How a calling thread acquires or releases a mutex now depends upon
the mutex type attribute.

The type attribute can have the following values:

Value Definition
Basic mutex with no specific error checking built
in. Does not report a deadlock error.

PTHREAD_MUTEX_NORMAL

Allows any thread to recursively lock a mutex.
The mutex must be unlocked an equal number
of times to release the mutex.

PTHREAD_MUTEX_RECURSIVE

Detects and reports simple usage errors; that is,
an attempt to unlock a mutex that is not locked
by the calling thread or that is not locked at all,
or an attempt to relock a mutex the thread

PTHREAD_MUTEX_ERRORCHECK
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Value Definition
already owns.
The default mutex type. May be mapped to any
of the above mutex types or may be an
implementation-dependent type.

PTHREAD_MUTEX_DEFAULT

Normal mutexes do not detect deadlock conditions; for example, a thread will hang if it tries to
relock a normal mutex that it already owns. Attempting to unlock a mutex locked by another
thread, or unlocking an unlocked mutex, results in undefined behavior. Normal mutexes will
usually be the fastest type of mutex available on a platform but provide the least error checking.

Recursive mutexes are useful for converting old code where it is difficult to establish clear
boundaries of synchronization. A thread can relock a recursive mutex without first unlocking it.
The relocking deadlock which can occur with normal mutexes cannot occur with this type of
mutex. However, multiple locks of a recursive mutex require the same number of unlocks to
release the mutex before another thread can acquire the mutex. Furthermore, this type of
mutex maintains the concept of an owner. Thus, a thread attempting to unlock a recursive
mutex which another thread has locked returns with an error. A thread attempting to unlock a
recursive mutex that is not locked shall return with an error. Never use a recursive mutex with
condition variables because the implicit unlock performed by pthread_cond_wait( ) or
pthread_cond_timedwait( ) will not actually release the mutex if it had been locked multiple
times.

Errorcheck mutexes provide error checking and are useful primarily as a debugging aid. A
thread attempting to relock an errorcheck mutex without first unlocking it returns with an error.
Again, this type of mutex maintains the concept of an owner. Thus, a thread attempting to
unlock an errorcheck mutex which another thread has locked returns with an error. A thread
attempting to unlock an errorcheck mutex that is not locked also returns with an error. It should
be noted that errorcheck mutexes will almost always be much slower than normal mutexes due
to the extra state checks performed.

The default mutex type provides implementation-dependent error checking. The default mutex
may be mapped to one of the other defined types or may be something entirely different. This
enables each vendor to provide the mutex semantics which the vendor feels will be most useful
to their target users. Most vendors will probably choose to make normal mutexes the default so
as to give applications the benefit of the fastest type of mutexes available on their platform.
Check your implementation’s documentation.

An application developer can use any of the mutex types almost interchangeably as long as the
application does not depend upon the implementation detecting (or failing to detect) any
particular errors. Note that a recursive mutex can be used with condition variable waits as long
as the application never recursively locks the mutex.

Two functions are provided in XSH, Issue 5 for manipulating the type attribute of a mutex
attributes object. This attribute is set or returned in the type parameter of these functions. The
pthread_mutexattr_settype( ) function is used to set a specific type value while
pthread_mutexattr_gettype( ) is used to return the type of the mutex. Setting the type attribute
of a mutex attributes object affects only mutexes initialized using that mutex attributes object.
Changing the type attribute does not affect mutexes previously initialized using that mutex
attributes object.
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11.4 Read-Write Locks and Attributes
Read-write locks (also known as readers-writer locks) allow a thread to exclusively lock some
shared data while updating that data, or allow any number of threads to have simultaneous
read-only access to the data.

Unlike a mutex, a read-write lock distinguishes between reading data and writing data. A mutex
excludes all other threads. A read-write lock allows other threads access to the data, providing
no thread is modifying the data. Thus, a read-write lock is less primitive than either a mutex-
condition variable pair or a semaphore.

Application developers should consider using a read-write lock rather than a mutex to protect
data that is frequently referenced but seldom modified. Most threads (readers) will be able to
read the data without waiting and will only have to block when some other thread (a writer) is in
the process of modifying the data. Conversely a thread that wants to change the data is forced
to wait until there are no readers. This type of lock is often used to facilitate parallel access to
data on multiprocessor platforms or to avoid context switches on single processor platforms
where multiple threads access the same data.

If a read-write lock becomes unlocked and there are multiple threads waiting to acquire the write
lock, the implementation’s scheduling policy determines which thread shall acquire the read-
write lock for writing. If there are multiple threads blocked on a read-write lock for both read
locks and write locks, it is unspecified whether the readers or a writer acquire the lock first.
However, for performance reasons, implementations often favor writers over readers to avoid
potential writer starvation.

A read-write lock object is an implementation-dependent opaque object of type
pthread_rwlock_t as defined in <pthread.h> . There are two different sorts of locks associated
with a read-write lock — a read lock and a write lock.

The pthread_rwlockattr_init( ) function initializes a read-write lock attributes object with the
default value for all the attributes defined in the implementation. After a read-write lock
attributes object has been used to initialize one or more read-write locks, changes to the read-
write lock attributes object, including destruction, do not affect previously initialized read-write
locks.

Implementations must provide at least the read-write lock attribute process-shared. This
attribute can have the following values:

Value Definition
Any thread of any process that has access to
the memory where the read-write lock resides
can manipulate the read-write lock.

PTHREAD_PROCESS_SHARED

Only threads created within the same process
as the thread that initialized the read-write lock
can manipulate the read-write lock. This is the
default value.

PTHREAD_PROCESS_PRIVATE

The pthread_rwlockattr_setpshared( ) function is used to set the process-shared attribute of an
initialized read-write lock attributes object while the function pthread_rwlockattr_getpshared( )
obtains the current value of the process-shared attribute.

A read-write lock attributes object is destroyed using the pthread_rwlockattr_destroy( ) function.
The effect of subsequent use of the read-write lock attributes object is undefined.

A thread creates a read-write lock using the pthread_rwlock_init( ) function. The attributes of the
read-write lock can be specified by the application developer, otherwise the default
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implementation-dependent read-write lock attributes are used if the pointer to the read-write lock
attributes object is NULL. In cases where the default attributes are appropriate, the
PTHREAD_RWLOCK_INITIALIZER macro can be used to initialize statically allocated read-
write locks.

A thread which wants to apply a read lock to the read-write lock can use either
pthread_rwlock_rdlock( ) or pthread_rwlock_tryrdlock( ). If pthread_rwlock_rdlock( ) is used, the
thread acquires a read lock if a writer does not hold the write lock and there are no writers
blocked on the write lock. If a read lock is not acquired, the calling thread blocks until it can
acquire a lock. However, if pthread_rwlock_tryrdlock( ) is used, the function returns immediately
with the error EBUSY if any thread holds a write lock or there are blocked writers waiting for the
write lock.

A thread which wants to apply a write lock to the read-write lock can use either of two functions:
pthread_rwlock_wrlock( ) or pthread_rwlock_trywrlock( ). If pthread_rwlock_wrlock( ) is used,
the thread acquires the write lock if no other reader or writer threads hold the read-write lock. If
the write lock is not acquired, the thread blocks until it can acquire the write lock. However, if
pthread_rwlock_trywrlock( ) is used, the function returns immediately with the error EBUSY if
any thread is holding either a read or a write lock.

The pthread_rwlock_unlock( ) function is used to unlock a read-write lock object held by the
calling thread. Results are undefined if the read-write lock is not held by the calling thread. If
there are other read locks currently held on the read-write lock object, the read-write lock object
shall remain in the read locked state but without the current thread as one of its owners. If this
function releases the last read lock for this read-write lock object, the read-write lock object shall
be put in the unlocked read state. If this function is called to release a write lock for this read-
write lock object, the read-write lock object shall be put in the unlocked state.

The same POSIX working group which developed POSIX.1b and POSIX.1c is currently
developing IEEE PASC P1003.1j draft standard, which specifies a set of extensions for realtime
and threaded programming. This includes readers-writer locks which are nearly identical to the
XSH, Issue 5 read-write locks. The Aspen Group was aware of this draft standard, but felt that
there was an immediate and urgent need for standardization in the area of read-write locks.

The following table maps the XSH, Issue 5 read-write lock functions to their equivalent IEEE
PASC P1003.1j draft 5 functions:

XSH, Issue 5 IEEE PASC P1003.1j
pthread_rwlock_init( ) rwlock_init( )
pthread_rwlock_destroy( ) rwlock_destroy( )
pthread_rwlock_rdlock( ) rwlock_rlock( )
pthread_rwlock_tryrdlock( ) rwlock_tryrlock( )
pthread_rwlock_wrlock( ) rwlock_wlock( )
pthread_rwlock_trywrlock( ) rwlock_trywlock( )
pthread_rwlock_unlock( ) rwlock_unlock( )
pthread_rwlockattr_init( ) rwlock_attr_init( )
pthread_rwlockattr_destroy( ) rwlock_attr_destroy( )
pthread_rwlockattr_setpshared( ) rwlock_attr_setpshared( )
pthread_rwlockattr_getpshared( ) rwlock_attr_getpshared( )

The Aspen Group chose function names which are different from those used in the IEEE PASC
P1003.1j draft standard to avoid name space conflicts with those interfaces. Note that draft 5
requires the header <semaphore.h> while XSH, Issue 5 requires the <pthread.h> header.
However, it is hoped that the final POSIX.1j standard will adopt the Aspen functions names and
headers instead of the current ones.
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11.5 Thread Concurrency Level
On threads implementations that multiplex user threads onto a smaller set of kernel execution
entities, the system attempts to create a reasonable number of kernel execution entities for the
application upon application startup.

On some implementations, these kernel entities are retained by user threads that block in the
kernel. Other implementations do not timeslice user threads so that multiple compute-bound
user threads can share a kernel thread. On such implementations, some applications may use
up all the available kernel execution entities before its user-space threads are used up. The
process may be left with user threads capable of doing work for the application but with no way
to schedule them.

The pthread_setconcurrency( ) function enables an application to request more kernel entities;
that is, specify a desired concurrency level. However, this function merely provides a hint to the
implementation. The implementation is free to ignore this request or to provide some other
number of kernel entities. If an implementation does not multiplex user threads onto a smaller
number of kernel execution entities, the pthread_setconcurrency( ) function has no effect.

The pthread_setconcurrency( ) function may also have an effect on implementations where the
kernel mode and user mode schedulers cooperate to ensure that ready user threads are not
prevented from running by other threads blocked in the kernel.

The pthread_getconcurrency( ) function always returns the value set by a previous call to
pthread_setconcurrency( ). However, if pthread_setconcurrency( ) was not previously called,
this function shall return zero to indicate that the threads implementation is maintaining the
concurrency level.

11.6 Thread Stack Guard Size
DCE threads introduced the concept of a thread stack guard size. Most thread implementations
add a region of protected memory to a thread’s stack, commonly known as a guard region, as a
safety measure to prevent stack pointer overflow in one thread from corrupting the contents of
another thread’s stack. The default size of the guard regions attribute is PAGESIZE bytes and
is implementation-dependent.

Some application developers may wish to change the stack guard size. When an application
creates a large number of threads, the extra page allocated for each stack may strain system
resources. In addition to the extra page of memory, the kernel’s memory manager has to keep
track of the different protections on adjoining pages. When this is a problem, the application
developer may request a guard size of 0 bytes to conserve system resources by eliminating
stack overflow protection.

Conversely an application that allocates large data structures such as arrays on the stack may
wish to increase the default guard size in order to detect stack overflow. If a thread allocates
two pages for a data array, a single guard page provides little protection against thread stack
overflows since the thread can corrupt adjoining memory beyond the guard page.

XSH, Issue 5 defines a new attribute of a thread attributes object; that is, the guardsize attribute
which allows applications to specify the size of the guard region of a thread’s stack.

Two functions are provided for manipulating a thread’s stack guard size. The
pthread_attr_setguardsize( ) function sets the thread guardsize attribute, and the
pthread_attr_getguardsize( ) function retrieves the current value.

xxviii Threads and the Single UNIX  Specification, Version 2 (Copyright 1997 The Open Group)



X/Open Threads Thread Stack Guard Size

An implementation may round up the requested guard size to a multiple of the configurable
system variable PAGESIZE. In this case, pthread_attr_getguardsize( ) returns the guard size
specified by the previous pthread_attr_setguardsize( ) function call and not the rounded up
value.

If an application is managing its own thread stacks using the stackaddr attribute, the guardsize
attribute is ignored and no stack overflow protection is provided. In this case, it is the
responsibility of the application to manage stack overflow along with stack allocation.

11.7 Parallel I/O
Many I/O intensive applications, such as database engines, attempt to improve performance
through the use of parallel I/O. However, POSIX.1 does not support parallel I/O very well
because the current offset of a file is an attribute of the file descriptor.

Suppose two or more threads independently issue read requests on the same file. To read
specific data from a file, a thread must first call lseek( ) to seek to the proper offset in the file,
and then call read( ) to retrieve the required data. If more than one thread does this at the same
time, the first thread may complete its seek call, but before it gets a chance to issue its read call
a second thread may complete its seek call, resulting in the first thread accessing incorrect data
when it issues its read call. One workaround is to lock the file descriptor while seeking and
reading or writing, but this reduces parallelism and adds overhead.

Instead, XSH, Issue 5 provides two functions to make seek/read and seek/write operations
atomic. The file descriptor’s current offset is unchanged, thus allowing multiple read and write
operations to proceed in parallel. This improves the I/O performance of threaded applications.
The pread( ) function is used to do an atomic read of data from a file into a buffer. Conversely,
the pwrite( ) function does an atomic write of data from a buffer to a file.

11.8 Functional Overview
The <pthread.h> header defines the following new types:

• pthread_rwlock_t

Read-write lock object.

• pthread_rwlockattr_t

Read-write lock attributes object.

The <pthread.h> header defines the following new macros:

• PTHREAD_RWLOCK_INITIALIZER

Statically initialize a read-write lock object.

All of the following functions have their prototypes defined in <pthread.h> :

• pthread_mutexattr_gettype( )

Get the value of the type attribute of the specified mutex attribute object attr .

int pthread_mutexattr_gettype(const pthread_mutexattr_t *attr,
int *type);

Extracted from Go Solo 2 xxix



Functional Overview X/Open Threads

• pthread_mutexattr_settype( )

Set the value of the type attribute of the specified mutex attribute object attr .

int pthread_mutexattr_settype(pthread_mutexattr_t *attr,
int *type);

• pthread_rwlock_init( )

Initialize the read-write lock object rwlock.

int pthread_rwlock_init(pthread_rwlock_t *rwlock,
const pthread_rwlockattr_t *attr);

• pthread_rwlock_rdlock( )

Lock the read-write lock object rwlock for reading.

int pthread_rwlock_rdlock(pthread_rwlock_t *rwlock);

• pthread_rwlock_tryrdlock( )

Lock the read-write lock object rwlock for reading unless there is an existing write lock or
blocked writers.

int pthread_rwlock_tryrdlock(pthread_rwlock_t *rwlock);

• pthread_rwlock_wrlock( )

Lock the read-write lock object rwlock for writing. Block, if necessary, until the write lock
becomes available.

int pthread_rwlock_wrlock(pthread_rwlock_t *rwlock);

• pthread_rwlock_trywrlock( )

Lock the read-write lock object rwlock for writing unless there are any existing read or write
locks.

int pthread_rwlock_trywrlock(pthread_rwlock_t *rwlock);

• pthread_rwlock_unlock( )

Unlock the read-write lock object rwlock.

int pthread_rwlock_unlock(pthread_rwlock_t *rwlock);

• pthread_rwlock_destroy( )

Destroy the read-write lock object rwlock.

int pthread_rwlock_destroy(pthread_rwlock_t *rwlock);

• pthread_rwlockattr_init( )

Initialize the read-write lock attributes object rwlockattr.

int pthread_rwlockattr_init(pthread_rwlock_t *rwlockattr);

• pthread_rwlockattr_getpshared( )

Get the value of the process-shared attribute of the read-write lock attributes object
rwlockattr.

int pthread_rwlockattr_getpshared(const pthread_rwlockattr_t
*rwlockattr, int *pshared);
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• pthread_rwlockattr_setpshared( )

Set the value of the process-shared attribute of the read-write lock attributes object
rwlockattr.

int pthread_rwlockattr_setpshared(pthread_rwlockattr_t *rwlockattr,
int *pshared);

• thread_rwlockattr_destroy( )

Destroy the read-write lock attributes object rwlockattr.

int pthread_rwlockattr_destroy(pthread_rwlock_t *rwlockattr);

• pthread_getconcurrency( )

Get the level of thread concurrency.

int pthread_getconcurrency(void);

• pthread_setconcurrency( )

Set the level of thread concurrency.

int pthread_setconcurrency(int new_level);

• pthread_attr_getguardsize( )

Get the value of the guardsize attribute of the thread attributes object attr .

int pthread_attr_getguardsize(const pthread_attr_t *attr,
size_t *guardsize);

• pthread_attr_setguardsize( )

Set the value of the guardsize attribute of the thread attributes object attr .

int pthread_attr_setguardsize(pthread_attr_t *attr, size_t guardsize);

• pread( )

Read nbyte bytes from offset offset in the file opened on file descriptor filedes.

size_t pread(int filedes, void *buf, size_t nbyte, off_t offset);

• pwrite( )

Write nbyte bytes from offset offset in the file opened on file descriptor filedes.

size_t pwrite(int filedes, void *buf, size_t nbyte, off_t offset);
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