
This is an extract from:

A Source Book from The Open Group

The Authorized Guide to the Single UNIX Specification, Version 4

The Open Group

Copyright © September 2010, The Open Group

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or
by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior
permission of the copyright owners.

A Source Book from The Open Group

The Authorized Guide to the Single UNIX Specification, Version 4

Published in the U.K. by The Open Group, September 2010.

Any comments relating to the material contained in this document may be submitted to:

The Open Group
Apex Plaza
Forbury Road
Reading
Berkshire, RG1 1AX
United Kingdom

or by Electronic Mail to:

OGSpecs@opengroup.org

ii A Source Book from The Open Group (2010)

Chapter 11

System Interfaces Migration

11.1 Introduction

This chapter contains a section for each system interface defined in XSH, Issue 7. Each section
contains the SYNOPSIS and gives the derivation of the interface. For interfaces new to Issue 7, a
brief description is included, complete with examples where appropriate. For interfaces carried
forward from Issue 6, syntax and semantic changes made to the interface in Issue 7 are identified
(if any). Only changes that might affect an application programmer are included.

11.2 System Interfaces

_Exit, _exit

Purpose: Terminate a process.

Synopsis: #include <stdlib.h>

void _Exit(int status);

#include <unistd.h>

void _exit(int status);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: Austin Group Interpretation 1003.1-2001 #085 is applied, clarifying the text
regarding flushing of streams and closing of temporary files.

Functionality relating to the Asynchronous Input and Output, Memory Mapped
Files, and Semaphores options is moved to the Base.

_longjmp, _setjmp

Purpose: Non-local goto.

Synopsis:OB XSI #include <setjmp.h>

void _longjmp(jmp_buf env, int val);
int _setjmp(jmp_buf env);

Derivation: First released in Issue 4, Version 2.

Issue 7: The _longjmp() and _setjmp() functions are marked obsolescent. Applications
should use siglongjmp() and sigsetjmp() respectively.

The Authorized Guide to the Single UNIX Specification, Version 4 1

System Interfaces System Interfaces Migration

_tolower

Purpose: Transliterate uppercase characters to lowercase.

Synopsis:OB XSI #include <ctype.h>

int _tolower(int c);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: The _tolower() function is marked obsolescent. Applications should use the
tolower() function instead.

_toupper

Purpose: Transliterate lowercase characters to uppercase.

Synopsis:OB XSI #include <ctype.h>

int _toupper(int c);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: The _toupper() function is marked obsolescent. Applications should use the
toupper() function instead.

a64l, l64a

Purpose: Convert between a 32-bit integer and a radix-64 ASCII string.

Synopsis:XSI #include <stdlib.h>

long a64l(const char *s);
char *l64a(long value);

Derivation: First released in Issue 4, Version 2.

Issue 7: No functional changes are made in this issue.

abort

Purpose: Generate an abnormal process abort.

Synopsis: #include <stdlib.h>

void abort(void);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

abs

Purpose: Return an integer absolute value.

Synopsis: #include <stdlib.h>

int abs(int i);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

2 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

Issue 7: No functional changes are made in this issue.

accept

Purpose: Accept a new connection on a socket.

Synopsis: #include <sys/socket.h>

int accept(int socket, struct sockaddr *restrict address,
socklen_t *restrict address_len);

Derivation: First released in Issue 6. Derived from the Commands and Utilities, Issue 5
(XCU5).

Issue 7: SD5-XBD-ERN-4 is applied, changing the definition of the [EMFILE] error.

Austin Group Interpretation 1003.1-2001 #044 is applied, changing the ‘‘may fail’’
[ENOBUFS] and [ENOMEM] errors to become ‘‘shall fail’’ errors.

Functionality relating to XSI STREAMS is marked obsolescent.

access, faccessat

Purpose: Determine accessibility of a file relative to directory file descriptor.

Synopsis: #include <unistd.h>

int access(const char *path, int amode);
int faccessat(int fd, const char *path, int amode, int flag);

The faccessat() function is equivalent to the access() function, except in the case
where path specifies a relative path. In this case the file whose accessibility is to be
determined is located relative to the directory associated with the file descriptor fd
instead of the current working directory. If the file descriptor was opened without
O_SEARCH, the function checks whether directory searches are permitted using
the current permissions of the directory underlying the file descriptor. If the file
descriptor was opened with O_SEARCH, the function does not perform the check.

The AT_EACCESS flag can be used to specify that checks for accessibility are
performed using the effective user and group IDs instead of the real user and
group ID.

The purpose of the faccessat() function is to enable the checking of the accessibility
of files in directories other than the current working directory without exposure to
race conditions. Any part of the path of a file could be changed in parallel to a call
to access(), resulting in unspecified behavior. By opening a file descriptor for the
target directory and using the faccessat() function it can be guaranteed that the file
tested for accessibility is located relative to the desired directory.

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: Austin Group Interpretation 1003.1-2001 #046 is applied.

Austin Group Interpretation 1003.1-2001 #143 is applied, allowing
implementations to support pathnames longer than {PATH_MAX}.

The faccessat() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 2.

The [ENOTDIR] error condition is clarified to cover the condition where the last
component of a pathname exists but is not a directory or a symbolic link to a
directory.

The Authorized Guide to the Single UNIX Specification, Version 4 3

System Interfaces System Interfaces Migration

acos, acosf, acosl

Purpose: Arc cosine functions.

Synopsis: #include <math.h>

double acos(double x);
float acosf(float x);
long double acosl(long double x);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

acosh, acoshf, acoshl

Purpose: Inverse hyperbolic cosine functions.

Synopsis: #include <math.h>

double acosh(double x);
float acoshf(float x);
long double acoshl(long double x);

Derivation: First released in Issue 4, Version 2.

Issue 7: No functional changes are made in this issue.

aio_cancel

Purpose: Cancel an asynchronous I/O request.

Synopsis: #include <aio.h>

int aio_cancel(int fildes, struct aiocb *aiocbp);

Derivation: First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

Issue 7: The aio_cancel() function is moved from the Asynchronous Input and Output
option to the Base.

aio_error

Purpose: Retrieve errors status for an asynchronous I/O operation.

Synopsis: #include <aio.h>

int aio_error(const struct aiocb *aiocbp);

Derivation: First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

Issue 7: Austin Group Interpretation 1003.1-2001 #045 is applied, clarifying that the
behavior is undefined if the aiocb structure pointed to by aiocbp is not associated
with an operation that has been scheduled.

SD5-XSH-ERN-148 is applied, clarifying that when aio_error() fails it returns −1
and sets errno.

The aio_error() function is moved from the Asynchronous Input and Output option
to the Base.

4 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

aio_fsync

Purpose: Asynchronous file synchronization.

Synopsis: #include <aio.h>

int aio_fsync(int op, struct aiocb *aiocbp);

Derivation: First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

Issue 7: The aio_fsync() function is moved from the Asynchronous Input and Output
option to the Base.

aio_read

Purpose: Asynchronous read from a file.

Synopsis: #include <aio.h>

int aio_read(struct aiocb *aiocbp);

Derivation: First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

Issue 7: Austin Group Interpretation 1003.1-2001 #082 is applied.

The aio_read() function is moved from the Asynchronous Input and Output option
to the Base.

aio_return

Purpose: Retrieve return status of an asynchronous I/O operation.

Synopsis: #include <aio.h>

ssize_t aio_return(struct aiocb *aiocbp);

Derivation: First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

Issue 7: SD5-XSH-ERN-148 is applied, clarifying that when aio_return() fails it returns −1
and sets errno.

The aio_return() function is moved from the Asynchronous Input and Output
option to the Base.

aio_suspend

Purpose: Wait for an asynchronous I/O request.

Synopsis: #include <aio.h>

int aio_suspend(const struct aiocb *const list[], int nent,
const struct timespec *timeout);

Derivation: First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

Issue 7: The aio_suspend() function is moved from the Asynchronous Input and Output
option to the Base.

The Authorized Guide to the Single UNIX Specification, Version 4 5

System Interfaces System Interfaces Migration

aio_write

Purpose: Asynchronous write to a file.

Synopsis: #include <aio.h>

int aio_write(struct aiocb *aiocbp);

Derivation: First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

Issue 7: Austin Group Interpretation 1003.1-2001 #082 is applied.

The aio_write() function is moved from the Asynchronous Input and Output
option to the Base.

alarm

Purpose: Schedule an alarm signal.

Synopsis: #include <unistd.h>

unsigned alarm(unsigned seconds);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

alphasort, scandir

Purpose: Scan a directory.

Synopsis: #include <dirent.h>

int alphasort(const struct dirent **d1,
const struct dirent **d2);

int scandir(const char *dir, struct dirent ***namelist,
int (*sel)(const struct dirent *),
int (*compar)(const struct dirent **,
const struct dirent **));

The alphasort() function can be used as the comparison function for the scandir()
function to sort the directory entries, d1 and d2, into alphabetical order. Sorting
happens as if by calling the strcoll() function on the d_name element of the dirent
structures passed as the two parameters. If the strcoll() function fails, the return
value of alphasort() is unspecified.

The scandir() function scans the directory dir, calling the function referenced by sel
on each directory entry. Entries for which the function referenced by sel returns
non-zero are stored in strings allocated as if by a call to malloc(), and sorted as if by
a call to qsort() with the comparison function compar, except that compar need not
provide total ordering. The strings are collected in array namelist which is allocated
as if by a call to malloc().

Derivation: First released in Issue 7. Derived from The Open Group Technical Standard, 2006,
Extended API Set Part 1.

Issue 7: First released in Issue 7.

6 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

asctime, asctime_r

Purpose: Convert date and time to a string.

Synopsis:OB #include <time.h>

char *asctime(const struct tm *timeptr);
OB CX char *asctime_r(const struct tm *restrict tm,

char *restrict buf);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: Austin Group Interpretation 1003.1-2001 #053 is applied, marking these functions
obsolescent. Applications should use the strftime() function instead.

The asctime_r() function is moved from the Thread-Safe Functions option to the
Base.

asin, asinf, asinl

Purpose: Arc sine function.

Synopsis: #include <math.h>

double asin(double x);
float asinf(float x);
long double asinl(long double x);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

asinh, asinhf, asinhl

Purpose: Inverse hyperbolic sine functions.

Synopsis: #include <math.h>

double asinh(double x);
float asinhf(float x);
long double asinhl(long double x);

Derivation: First released in Issue 4, Version 2.

Issue 7: No functional changes are made in this issue.

assert

Purpose: Insert program diagnostics.

Synopsis: #include <assert.h>

void assert(scalar expression);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

The Authorized Guide to the Single UNIX Specification, Version 4 7

System Interfaces System Interfaces Migration

atan, atanf, atanl

Purpose: Arc tangent function.

Synopsis: #include <math.h>

double atan(double x);
float atanf(float x);
long double atanl(long double x);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

atan2, atan2f, atan2l

Purpose: Arc tangent functions.

Synopsis: #include <math.h>

double atan2(double y, double x);
float atan2f(float y, float x);
long double atan2l(long double y, long double x);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

atanh, atanhf, atanhl

Purpose: Inverse hyperbolic tangent functions.

Synopsis: #include <math.h>

double atanh(double x);
float atanhf(float x);
long double atanhl(long double x);

Derivation: First released in Issue 4, Version 2.

Issue 7: No functional changes are made in this issue.

atexit

Purpose: Register a function to run at process termination.

Synopsis: #include <stdlib.h>

int atexit(void (*func)(void));

Derivation: First released in Issue 4. Derived from the IEEE Std 1003.1b-1993.

Issue 7: No functional changes are made in this issue.

atof

Purpose: Convert a string to a double-precision number.

Synopsis: #include <stdlib.h>

double atof(const char *str);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

8 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

Issue 7: No functional changes are made in this issue.

atoi

Purpose: Convert a string to an integer.

Synopsis: #include <stdlib.h>

int atoi(const char *str);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

atol, atoll

Purpose: Convert a string to a long integer.

Synopsis: #include <stdlib.h>

long atol(const char *str);
long long atoll(const char *nptr);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

basename

Purpose: Return the last component of a pathname.

Synopsis:XSI #include <libgen.h>

char *basename(char *path);

Derivation: First released in Issue 4, Version 2.

Issue 7: No functional changes are made in this issue.

bind

Purpose: Bind a name to a socket.

Synopsis: #include <sys/socket.h>

int bind(int socket, const struct sockaddr *address,
socklen_t address_len);

Derivation: First released in Issue 6. Derived from the Commands and Utilities, Issue 5
(XCU5).

Issue 7: Austin Group Interpretation 1003.1-2001 #044 is applied, changing the ‘‘may fail’’
[ENOBUFS] error to become a ‘‘shall fail’’ error.

Austin Group Interpretation 1003.1-2001 #143 is applied, allowing
implementations to support pathnames longer than {PATH_MAX}.

SD5-XSH-ERN-185 is applied, specifying asynchronous behavior for bind() when
O_NONBLOCK is set for the socket.

An example is added.

The Authorized Guide to the Single UNIX Specification, Version 4 9

System Interfaces System Interfaces Migration

bsearch

Purpose: Binary search a sorted table.

Synopsis: #include <stdlib.h>

void *bsearch(const void *key, const void *base, size_t nel,
size_t width, int (*compar)(const void *, const void *));

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: The EXAMPLES section is revised.

btowc

Purpose: Single byte to wide character conversion.

Synopsis: #include <stdio.h>
#include <wchar.h>

wint_t btowc(int c);

Derivation: First released in Issue 5. Included for alignment with .

Issue 7: No functional changes are made in this issue.

cabs, cabsf, cabsl

Purpose: Return a complex absolute value.

Synopsis: #include <complex.h>

double cabs(double complex z);
float cabsf(float complex z);
long double cabsl(long double complex z);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

cacos, cacosf, cacosl

Purpose: Complex arc cosine functions.

Synopsis: #include <complex.h>

double complex cacos(double complex z);
float complex cacosf(float complex z);
long double complex cacosl(long double complex z);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

cacosh, cacoshf, cacoshl

Purpose: Complex arc hyperbolic cosine functions.

Synopsis: #include <complex.h>

double complex cacosh(double complex z);
float complex cacoshf(float complex z);
long double complex cacoshl(long double complex z);

10 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

calloc

Purpose: A memory allocator.

Synopsis: #include <stdlib.h>

void *calloc(size_t nelem, size_t elsize);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

carg, cargf, cargl

Purpose: Complex argument functions.

Synopsis: #include <complex.h>

double carg(double complex z);
float cargf(float complex z);
long double cargl(long double complex z);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

casin, casinf, casinl

Purpose: Complex arc sine functions.

Synopsis: #include <complex.h>

double complex casin(double complex z);
float complex casinf(float complex z);
long double complex casinl(long double complex z);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

casinh, casinhf, casinhl

Purpose: Complex arc hyperbolic sine functions.

Synopsis: #include <complex.h>

double complex casinh(double complex z);
float complex casinhf(float complex z);
long double complex casinhl(long double complex z);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

The Authorized Guide to the Single UNIX Specification, Version 4 11

System Interfaces System Interfaces Migration

catan, catanf, catanl

Purpose: Complex arc tangent functions.

Synopsis: #include <complex.h>

double complex catan(double complex z);
float complex catanf(float complex z);
long double complex catanl(long double complex z);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

catanh, catanhf, catanhl

Purpose: Complex arc hyperbolic tangent functions.

Synopsis: #include <complex.h>

double complex catanh(double complex z);
float complex catanhf(float complex z);
long double complex catanhl(long double complex z);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

catclose

Purpose: Close a message catalog descriptor.

Synopsis: #include <nl_types.h>

int catclose(nl_catd catd);

Derivation: First released in Issue 2.

Issue 7: The catclose() function is moved from the XSI option to the Base.

catgets

Purpose: Read a program message.

Synopsis: #include <nl_types.h>

char *catgets(nl_catd catd, int set_id, int msg_id,
const char *s);

Derivation: First released in Issue 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #044 is applied, changing the ‘‘may fail’’
[EINTR] and [ENOMSG] errors to become ‘‘shall fail’’ errors, updating the
RETURN VALUE section, and updating the DESCRIPTION to note that the results
are undefined if catd is not a value returned by catopen() for a message catalog still
open in the process.

The catgets() function is moved from the XSI option to the Base.

12 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

catopen

Purpose: Open a message catalog.

Synopsis: #include <nl_types.h>

nl_catd catopen(const char *name, int oflag);

Derivation: First released in Issue 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #143 is applied, allowing
implementations to support pathnames longer than {PATH_MAX}.

SD5-XBD-ERN-4 is applied, changing the definition of the [EMFILE] error.

The catopen() function is moved from the XSI option to the Base.

cbrt, cbrtf, cbrtl

Purpose: Cube root functions.

Synopsis: #include <math.h>

double cbrt(double x);
float cbrtf(float x);
long double cbrtl(long double x);

Derivation: First released in Issue 4, Version 2.

Issue 7: No functional changes are made in this issue.

ccos, ccosf, ccosl

Purpose: Complex cosine functions.

Synopsis: #include <complex.h>

double complex ccos(double complex z);
float complex ccosf(float complex z);
long double complex ccosl(long double complex z);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

ccosh, ccoshf, ccoshl

Purpose: Complex hyperbolic cosine functions.

Synopsis: #include <complex.h>

double complex ccosh(double complex z);
float complex ccoshf(float complex z);
long double complex ccoshl(long double complex z);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

The Authorized Guide to the Single UNIX Specification, Version 4 13

System Interfaces System Interfaces Migration

ceil, ceilf, ceill

Purpose: Ceiling value function.

Synopsis: #include <math.h>

double ceil(double x);
float ceilf(float x);
long double ceill(long double x);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

cexp, cexpf, cexpl

Purpose: Complex exponential functions.

Synopsis: #include <complex.h>

double complex cexp(double complex z);
float complex cexpf(float complex z);
long double complex cexpl(long double complex z);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

cfgetispeed

Purpose: Get input baud rate.

Synopsis: #include <termios.h>

speed_t cfgetispeed(const struct termios *termios_p);

Derivation: First released in Issue 3. Included for alignment with the IEEE Std 1003.1-1988
(POSIX.1).

Issue 7: No functional changes are made in this issue.

cfgetospeed

Purpose: Get output baud rate.

Synopsis: #include <termios.h>

speed_t cfgetospeed(const struct termios *termios_p);

Derivation: First released in Issue 3. Included for alignment with the IEEE Std 1003.1-1988
(POSIX.1).

Issue 7: No functional changes are made in this issue.

cfsetispeed

Purpose: Set input baud rate.

Synopsis: #include <termios.h>

int cfsetispeed(struct termios *termios_p, speed_t speed);

Derivation: First released in Issue 3. Included for alignment with the IEEE Std 1003.1-1988
(POSIX.1).

14 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

Issue 7: No functional changes are made in this issue.

cfsetospeed

Purpose: Set output baud rate.

Synopsis: #include <termios.h>

int cfsetospeed(struct termios *termios_p, speed_t speed);

Derivation: First released in Issue 3. Included for alignment with the IEEE Std 1003.1-1988
(POSIX.1).

Issue 7: No functional changes are made in this issue.

chdir

Purpose: Change working directory.

Synopsis: #include <unistd.h>

int chdir(const char *path);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: Austin Group Interpretation 1003.1-2001 #143 is applied, allowing
implementations to support pathnames longer than {PATH_MAX}.

chmod, fchmodat

Purpose: Change mode of a file relative to directory file descriptor.

Synopsis: #include <sys/stat.h>

int chmod(const char *path, mode_t mode);
int fchmodat(int fd, const char *path, mode_t mode, int flag);

The fchmodat() function is equivalent to the chmod() function except in the case
where path specifies a relative path. In this case the file to be changed is
determined relative to the directory associated with the file descriptor fd instead of
the current working directory. If the file descriptor was opened without
O_SEARCH, the function checks whether directory searches are permitted using
the current permissions of the directory underlying the file descriptor. If the file
descriptor was opened with O_SEARCH, the function does not perform the check.

The AT_SYMLINK_NOFOLLOW flag can be used to specify that if path names a
symbolic link, then the mode of the symbolic link is changed.

The purpose of the fchmodat() function is to enable changing the mode of files in
directories other than the current working directory without exposure to race
conditions. Any part of the path of a file could be changed in parallel to a call to
chmod(), resulting in unspecified behavior. By opening a file descriptor for the
target directory and using the fchmodat() function it can be guaranteed that the
changed file is located relative to the desired directory.

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: Austin Group Interpretation 1003.1-2001 #143 is applied, allowing
implementations to support pathnames longer than {PATH_MAX}.

The fchmodat() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 2.

The Authorized Guide to the Single UNIX Specification, Version 4 15

System Interfaces System Interfaces Migration

Changes are made related to support for finegrained timestamps.

The [ENOTDIR] error condition is clarified to cover the condition where the last
component of a pathname exists but is not a directory or a symbolic link to a
directory.

chown, fchownat

Purpose: Change owner and group of a file relative to directory file descriptor.

Synopsis: #include <unistd.h>

int chown(const char *path, uid_t owner, gid_t group);
int fchownat(int fd, const char *path, uid_t owner,

gid_t group, int flag);

The fchownat() function is equivalent to the chown() and lchown() functions except
in the case where path specifies a relative path. In this case the file to be changed is
determined relative to the directory associated with the file descriptor fd instead of
the current working directory. If the file descriptor was opened without
O_SEARCH, the function checks whether directory searches are permitted using
the current permissions of the directory underlying the file descriptor. If the file
descriptor was opened with O_SEARCH, the function does not perform the check.

The AT_SYMLINK_NOFOLLOW flag controls whether fchownat() behaves like
chown() or lchown(): if AT_SYMLINK_NOFOLLOW is set and path names a
symbolic link, ownership of the symbolic link is changed.

The purpose of the fchownat() function is to enable changing ownership of files in
directories other than the current working directory without exposure to race
conditions. Any part of the path of a file could be changed in parallel to a call to
chown() or lchown(), resulting in unspecified behavior. By opening a file descriptor
for the target directory and using the fchownat() function it can be guaranteed that
the changed file is located relative to the desired directory.

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: Austin Group Interpretation 1003.1-2001 #143 is applied, allowing
implementations to support pathnames longer than {PATH_MAX}.

The fchownat() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 2.

Changes are made related to support for finegrained timestamps.

The [ENOTDIR] error condition is clarified to cover the condition where the last
component of a pathname exists but is not a directory or a symbolic link to a
directory.

cimag, cimagf, cimagl

Purpose: Complex imaginary functions.

Synopsis: #include <complex.h>

double cimag(double complex z);
float cimagf(float complex z);
long double cimagl(long double complex z);

16 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

clearerr

Purpose: Clear indicators on a stream.

Synopsis: #include <stdio.h>

void clearerr(FILE *stream);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

clock

Purpose: Report CPU time used.

Synopsis: #include <time.h>

clock_t clock(void);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

clock_getcpuclockid

Purpose: Access a process CPU-time clock (ADVANCED REALTIME).

Synopsis:CPT #include <time.h>

int clock_getcpuclockid(pid_t pid, clockid_t *clock_id);

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

Issue 7: No functional changes are made in this issue.

clock_getres, clock_gettime, clock_settime

Purpose: Clock and timer functions.

Synopsis:CX #include <time.h>

int clock_getres(clockid_t clock_id, struct timespec *res);
int clock_gettime(clockid_t clock_id, struct timespec *tp);
int clock_settime(clockid_t clock_id,

const struct timespec *tp);

Derivation: First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

Issue 7: Functionality relating to the Clock Selection option is moved to the Base.

The clock_getres(), clock_gettime(), and clock_settime() functions are moved from the
Timers option to the Base.

The Authorized Guide to the Single UNIX Specification, Version 4 17

System Interfaces System Interfaces Migration

clock_nanosleep

Purpose: High resolution sleep with specifiable clock.

Synopsis:CX #include <time.h>

int clock_nanosleep(clockid_t clock_id, int flags,
const struct timespec *rqtp, struct timespec *rmtp);

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1j-2000.

Issue 7: The clock_nanosleep() function is moved from the Clock Selection option to the
Base.

clog, clogf, clogl

Purpose: Complex natural logarithm functions.

Synopsis: #include <complex.h>

double complex clog(double complex z);
float complex clogf(float complex z);
long double complex clogl(long double complex z);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

close

Purpose: Close a file descriptor.

Synopsis: #include <unistd.h>

int close(int fildes);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: Functionality relating to the XSI STREAMS option is marked obsolescent.

Functionality relating to the Asynchronous Input and Output and Memory
Mapped Files options is moved to the Base.

Austin Group Interpretation 1003.1-2001 #139 is applied, clarifying that the
requirement for close() on a socket to block for up to the current linger interval is
not conditional on the O_NONBLOCK setting.

closedir

Purpose: Close a directory stream.

Synopsis: #include <dirent.h>

int closedir(DIR *dirp);

Derivation: First released in Issue 2.

Issue 7: No functional changes are made in this issue.

18 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

closelog, openlog, setlogmask, syslog

Purpose: Control system log.

Synopsis:XSI #include <syslog.h>

void closelog(void);
void openlog(const char *ident, int logopt, int facility);
int setlogmask(int maskpri);
void syslog(int priority, const char *message,

... /* arguments */);

Derivation: First released in Issue 4, Version 2.

Issue 7: No functional changes are made in this issue.

confstr

Purpose: Get configurable variables.

Synopsis: #include <unistd.h>

size_t confstr(int name, char *buf, size_t len);

Derivation: First released in Issue 4. Derived from the .

Issue 7: Austin Group Interpretation 1003.1-2001 #047 is applied, adding the _CS_V7_ENV
variable.

Austin Group Interpretations 1003.1-2001 #166 is applied to permit an additional
compiler flag to enable threads.

The V6 variables for the supported programming environments are marked
obsolescent.

The variables for the supported programming environments are updated to be V7.

The LEGACY variables and obsolescent values are removed.

conj, conjf, conjl

Purpose: Complex conjugate functions.

Synopsis: #include <complex.h>

double complex conj(double complex z);
float complex conjf(float complex z);
long double complex conjl(long double complex z);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

The Authorized Guide to the Single UNIX Specification, Version 4 19

System Interfaces System Interfaces Migration

connect

Purpose: Connect a socket.

Synopsis: #include <sys/socket.h>

int connect(int socket, const struct sockaddr *address,
socklen_t address_len);

Derivation: First released in Issue 6. Derived from the Commands and Utilities, Issue 5
(XCU5).

Issue 7: Austin Group Interpretation 1003.1-2001 #035 is applied, clarifying the description
of connected sockets.

Austin Group Interpretation 1003.1-2001 #143 is applied, allowing
implementations to support pathnames longer than {PATH_MAX}.

Austin Group Interpretation 1003.1-2001 #188 is applied, changing the method
used to reset a peer address for a datagram socket.

copysign, copysignf, copysignl

Purpose: Number manipulation function.

Synopsis: #include <math.h>

double copysign(double x, double y);
float copysignf(float x, float y);
long double copysignl(long double x, long double y);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

cos, cosf, cosl

Purpose: Cosine function.

Synopsis: #include <math.h>

double cos(double x);
float cosf(float x);
long double cosl(long double x);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

cosh, coshf, coshl

Purpose: Hyperbolic cosine functions.

Synopsis: #include <math.h>

double cosh(double x);
float coshf(float x);
long double coshl(long double x);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

20 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

cpow, cpowf, cpowl

Purpose: Complex power functions.

Synopsis: #include <complex.h>

double complex cpow(double complex x, double complex y);
float complex cpowf(float complex x, float complex y);
long double complex cpowl(long double complex x,

long double complex y);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

cproj, cprojf, cprojl

Purpose: Complex projection functions.

Synopsis: #include <complex.h>

double complex cproj(double complex z);
float complex cprojf(float complex z);
long double complex cprojl(long double complex z);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

creal, crealf, creall

Purpose: Complex real functions.

Synopsis: #include <complex.h>

double creal(double complex z);
float crealf(float complex z);
long double creall(long double complex z);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

creat

Purpose: Create a new file or rewrite an existing one.

Synopsis:OH #include <sys/stat.h>
#include <fcntl.h>

int creat(const char *path, mode_t mode);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

The Authorized Guide to the Single UNIX Specification, Version 4 21

System Interfaces System Interfaces Migration

crypt

Purpose: String encoding function (CRYPT).

Synopsis:XSI #include <unistd.h>

char *crypt(const char *key, const char *salt);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: SD5-XSH-ERN-178 is applied, clarifying the required contents of the salt argument.

csin, csinf, csinl

Purpose: Complex sine functions.

Synopsis: #include <complex.h>

double complex csin(double complex z);
float complex csinf(float complex z);
long double complex csinl(long double complex z);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

csinh, csinhf, csinhl

Purpose: Complex hyperbolic sine functions.

Synopsis: #include <complex.h>

double complex csinh(double complex z);
float complex csinhf(float complex z);
long double complex csinhl(long double complex z);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

csqrt, csqrtf, csqrtl

Purpose: Complex square root functions.

Synopsis: #include <complex.h>

double complex csqrt(double complex z);
float complex csqrtf(float complex z);
long double complex csqrtl(long double complex z);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

22 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

ctan, ctanf, ctanl

Purpose: Complex tangent functions.

Synopsis: #include <complex.h>

double complex ctan(double complex z);
float complex ctanf(float complex z);
long double complex ctanl(long double complex z);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

ctanh, ctanhf, ctanhl

Purpose: Complex hyperbolic tangent functions.

Synopsis: #include <complex.h>

double complex ctanh(double complex z);
float complex ctanhf(float complex z);
long double complex ctanhl(long double complex z);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

ctermid

Purpose: Generate a pathname for the controlling terminal.

Synopsis:CX #include <stdio.h>

char *ctermid(char *s);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: Austin Group Interpretation 1003.1-2001 #148 is applied, clarifying the thread-
safety requirements for the ctermid() function.

ctime, ctime_r

Purpose: Convert a time value to a date and time string.

Synopsis:OB #include <time.h>

char *ctime(const time_t *clock);
OB CX char *ctime_r(const time_t *clock, char *buf);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: SD5-XSH-ERN-25 is applied, noting in APPLICATION USAGE that attempts to
use ctime() or ctime_r() for times before the Epoch or for times beyond the year
9999 produce undefined results.

Austin Group Interpretation 1003.1-2001 #053 is applied, marking these functions
obsolescent. Applications should use strftime() to generate strings from broken-
down times. Values for the broken-down time structure can be obtained by calling
gmtime() or localtime().

The ctime_r() function is moved from the Thread-Safe Functions option to the

The Authorized Guide to the Single UNIX Specification, Version 4 23

System Interfaces System Interfaces Migration

Base.

dbm_clearerr, dbm_close, dbm_delete, dbm_error, dbm_fetch, dbm_firstkey, dbm_nextkey,
dbm_open, dbm_store

Purpose: Database functions.

Synopsis:XSI #include <ndbm.h>

int dbm_clearerr(DBM *db);
void dbm_close(DBM *db);
int dbm_delete(DBM *db, datum key);
int dbm_error(DBM *db);
datum dbm_fetch(DBM *db, datum key);
datum dbm_firstkey(DBM *db);
datum dbm_nextkey(DBM *db);
DBM *dbm_open(const char *file, int open_flags,

mode_t file_mode);
int dbm_store(DBM *db, datum key, datum content,

int store_mode);

Derivation: First released in Issue 4, Version 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #042 is applied so that the DESCRIPTION
permits newer implementations of the Berkeley DB interface.

difftime

Purpose: Compute the difference between two calendar time values.

Synopsis: #include <time.h>

double difftime(time_t time1, time_t time0);

Derivation: First released in Issue 4. Derived from the IEEE Std 1003.1i-1995.

Issue 7: No functional changes are made in this issue.

dirfd

Purpose: Extract the file descriptor used by a DIR stream.

Synopsis: #include <dirent.h>

int dirfd(DIR *dirp);

The dirfd() function returns a file descriptor referring to the same directory as the
dirp argument. This file descriptor is closed by a call to closedir().

The dirfd() function is intended to be a mechanism by which an application may
obtain a file descriptor to use for the fchdir() function.

This interface was introduced because the Base Definitions volume of
IEEE Std 1003.1-2001 does not make public the DIR data structure. Applications
tend to use the fchdir() function on the file descriptor returned by this interface,
and this has proven useful for security reasons; in particular, it is a better technique
than others where directory names might change.

The description uses the term ‘‘a file descriptor’’ rather than ‘‘the file descriptor’’.
The implication intended is that an implementation that does not use an fd for

24 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

diropen() could still open() the directory to implement the dirfd() function. Such a
descriptor must be closed later during a call to closedir().

An implementation that does not support file descriptors referring to directories
may fail with [ENOTSUP].

If it is necessary to allocate an fd to be returned by dirfd(), it should be done at the
time of a call to opendir().

Derivation: First released in Issue 7. Derived from The Open Group Technical Standard, 2006,
Extended API Set Part 1.

Issue 7: First released in Issue 7.

dirname

Purpose: Report the parent directory name of a file pathname.

Synopsis:XSI #include <libgen.h>

char *dirname(char *path);

Derivation: First released in Issue 4, Version 2.

Issue 7: The EXAMPLES section is revised.

div

Purpose: Compute the quotient and remainder of an integer division.

Synopsis: #include <stdlib.h>

div_t div(int numer, int denom);

Derivation: First released in Issue 4. Derived from the IEEE Std 1003.1i-1995.

Issue 7: No functional changes are made in this issue.

dlclose

Purpose: Close a dlopen() object.

Synopsis: #include <dlfcn.h>

int dlclose(void *handle);

Derivation: First released in Issue 5.

Issue 7: The dlopen() function is moved from the XSI option to Base.

dlerror

Purpose: Get diagnostic information.

Synopsis: #include <dlfcn.h>

char *dlerror(void);

Derivation: First released in Issue 5.

Issue 7: The dlerror() function is moved from the XSI option to the Base.

The Authorized Guide to the Single UNIX Specification, Version 4 25

System Interfaces System Interfaces Migration

dlopen

Purpose: Gain access to an executable object file.

Synopsis: #include <dlfcn.h>

void *dlopen(const char *file, int mode);

Derivation: First released in Issue 5.

Issue 7: The dlopen() function is moved from the XSI option to the Base.

The EXAMPLES section is updated to refer to dlsym().

dlsym

Purpose: Obtain the address of a symbol from a dlopen() object.

Synopsis: #include <dlfcn.h>

void *dlsym(void *restrict handle, const char *restrict name);

Derivation: First released in Issue 5.

Issue 7: The dlsym() function is moved from the XSI option to the Base.

drand48, erand48, jrand48, lcong48, lrand48, mrand48, nrand48, seed48, srand48

Purpose: Generate uniformly distributed pseudo-random numbers.

Synopsis:XSI #include <stdlib.h>

double drand48(void);
double erand48(unsigned short xsubi[3]);
long jrand48(unsigned short xsubi[3]);
void lcong48(unsigned short param[7]);
long lrand48(void);
long mrand48(void);
long nrand48(unsigned short xsubi[3]);
unsigned short *seed48(unsigned short seed16v[3]);
void srand48(long seedval);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

dup, dup2

Purpose: Duplicate an open file descriptor.

Synopsis: #include <unistd.h>

int dup(int fildes);
int dup2(int fildes, int fildes2);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: SD5-XSH-ERN-187 is applied, clarifying several aspects of the behavior of dup2().

26 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

duplocale

Purpose: Duplicate a locale object.

Synopsis:CX #include <locale.h>

locale_t duplocale(locale_t locobj);

The duplocale() function creates duplicate copy of the locale object referenced by
the locobj argument.

The use of the duplocale() function is recommended for situations where a locale
object is being used in multiple places, and it is possible that the lifetime of the
locale object might end before all uses are finished. Another reason to duplicate a
locale object is if a slightly modified form is needed. This can be achieved by a call
to newlocale() following the duplocale() call.

As with the newlocale() function, handles for locale objects created by the
duplocale() function should be released by a corresponding call to freelocale().

The following example shows a code fragment to create a slightly altered version
of an existing locale object. The function takes a locale object and a locale name and
it replaces the LC_TIME category data in the locale object with that from the
named locale.

#include <locale.h>
...

locale_t
with_changed_lc_time (locale_t obj, const char *name)
{

locale_t retval = duplocale (obj);
if (retval != (locale_t) 0)
{

locale_t changed = newlocale (LC_TIME_MASK, name,
retval);

if (changed == (locale_t) 0)
/* An error occurred. Free all allocated resources. */

freelocale (retval);
retval = changed;

}
return retval; }

}

Derivation: First released in Issue 7. Derived from The Open Group Technical Standard, 2006,
Extended API Set Part 4.

Issue 7: First released in Issue 7.

The Authorized Guide to the Single UNIX Specification, Version 4 27

System Interfaces System Interfaces Migration

encrypt

Purpose: Encoding function (CRYPT).

Synopsis:XSI #include <unistd.h>

void encrypt(char block[64], int edflag);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

endgrent, getgrent, setgrent

Purpose: Group database entry functions.

Synopsis:XSI #include <grp.h>

void endgrent(void);
struct group *getgrent(void);
void setgrent(void);

Derivation: First released in Issue 4, Version 2.

Issue 7: SD5-XBD-ERN-4 is applied, changing the definition of the [EMFILE] error.

endhostent, gethostent, sethostent

Purpose: Network host database functions.

Synopsis: #include <netdb.h>

void endhostent(void);
struct hostent *gethostent(void);
void sethostent(int stayopen);

Derivation: First released in Issue 6. Derived from the Commands and Utilities, Issue 5
(XCU5).

Issue 7: No functional changes are made in this issue.

endnetent, getnetbyaddr, getnetbyname, getnetent, setnetent

Purpose: Network database functions.

Synopsis: #include <netdb.h>

void endnetent(void);
struct netent *getnetbyaddr(uint32_t net, int type);
struct netent *getnetbyname(const char *name);
struct netent *getnetent(void);
void setnetent(int stayopen);

Derivation: First released in Issue 6. Derived from the Commands and Utilities, Issue 5
(XCU5).

Issue 7: No functional changes are made in this issue.

28 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

endprotoent, getprotobyname, getprotobynumber, getprotoent, setprotoent

Purpose: Network protocol database functions.

Synopsis: #include <netdb.h>

void endprotoent(void);
struct protoent *getprotobyname(const char *name);
struct protoent *getprotobynumber(int proto);
struct protoent *getprotoent(void);
void setprotoent(int stayopen);

Derivation: First released in Issue 6. Derived from the Commands and Utilities, Issue 5
(XCU5).

Issue 7: No functional changes are made in this issue.

endpwent, getpwent, setpwent

Purpose: User database functions.

Synopsis:XSI #include <pwd.h>

void endpwent(void);
struct passwd *getpwent(void);
void setpwent(void);

Derivation: First released in Issue 4, Version 2.

Issue 7: SD5-XBD-ERN-4 is applied, changing the definition of the [EMFILE] error.

The EXAMPLES section is revised.

endservent, getservbyname, getservbyport, getservent, setservent

Purpose: Network services database functions.

Synopsis: #include <netdb.h>

void endservent(void);
struct servent *getservbyname(const char *name,

const char *proto);
struct servent *getservbyport(int port, const char *proto);
struct servent *getservent(void);
void setservent(int stayopen);

Derivation: First released in Issue 6. Derived from the Commands and Utilities, Issue 5
(XCU5).

Issue 7: SD5-XBD-ERN-14 is applied, clarifying the way in which port numbers are
converted to and from network byte order.

The Authorized Guide to the Single UNIX Specification, Version 4 29

System Interfaces System Interfaces Migration

endutxent, getutxent, getutxid, getutxline, pututxline, setutxent

Purpose: User accounting database functions.

Synopsis:XSI #include <utmpx.h>

void endutxent(void);
struct utmpx *getutxent(void);
struct utmpx *getutxid(const struct utmpx *id);
struct utmpx *getutxline(const struct utmpx *line);
struct utmpx *pututxline(const struct utmpx *utmpx);
void setutxent(void);

Derivation: First released in Issue 4, Version 2.

Issue 7: No functional changes are made in this issue.

erf, erff, erfl

Purpose: Error functions.

Synopsis: #include <math.h>

double erf(double x);
float erff(float x);
long double erfl(long double x);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

erfc, erfcf, erfcl

Purpose: Complementary error functions.

Synopsis: #include <math.h>

double erfc(double x);
float erfcf(float x);
long double erfcl(long double x);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

errno

Purpose: Error return value.

Synopsis: #include <errno.h>

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

30 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

environ, execl, execle, execlp, execv, execve, execvp, fexecve

Purpose: Execute a file.

Synopsis: #include <unistd.h>

extern char **environ;
int execl(const char *path, const char *arg0,

... /*, (char *)0 */);
int execle(const char *path, const char *arg0, ... /*,

(char *)0, char *const envp[]*/);
int execlp(const char *file, const char *arg0, ... /*,

(char *)0 */);
int execv(const char *path, char *const argv[]);
int execve(const char *path, char *const argv[],

char *const envp[]);
int execvp(const char *file, char *const argv[]);
int fexecve(int fd, char *const argv[], char *const envp[]);

The fexecve() function is equivalent to the execve() function except that the file to be
executed is determined by the file descriptor fd instead of a pathname. The file
offset of fd is ignored.

The purpose of the fexecve() function is to enable executing a file which has been
verified to be the intended file. It is possible to actively check the file by reading
from the file descriptor and be sure that the file is not exchanged for another
between the reading and the execution. Alternatively, an function like openat() can
be used to open a file which has been found by reading the content of a directory
using readdir().

Since execute permission is checked by fexecve(), the file descriptor fd need not
have been opened with the O_EXEC flag. However, if the file to be executed denies
read and write permission for the process preparing to do the exec, the only way to
provide the fd to fexecve() will be to use the O_EXEC flag when opening fd. In this
case, the application will not be able to perform a checksum test since it will not be
able to read the contents of the file.

Note that when a file descriptor is opened with O_RDONLY, O_RDWR, or
O_WRONLY mode, the file descriptor can be used to read, read and write, or write
the file, respectively, even if the mode of the file changes after the file was opened.
Using the O_EXEC open mode is different; fexecve() will ignore the mode that was
used when the file descriptor was opened and the exec will fail if the mode of the
file associated with fd does not grant execute permission to the calling process at
the time fexecve() is called.

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: Austin Group Interpretation 1003.1-2001 #047 is applied, adding a warning for
execle(), execve() and fexecve() to the APPLICATION USAGE that the new process
might be invoked in a nonconforming environment if the envp array does not
contain implementation-defined variables required by the implementation to
provide a conforming environment. See the _CS_V7_ENV entry in <unistd.h>, and
confstr(), for details.

Austin Group Interpretation 1003.1-2001 #143 is applied, allowing
implementations to support pathnames longer than {PATH_MAX}.

The fexecve() function is added from The Open Group Technical Standard, 2006,

The Authorized Guide to the Single UNIX Specification, Version 4 31

System Interfaces System Interfaces Migration

Extended API Set Part 2.

Functionality relating to the Asynchronous Input and Output, Memory Mapped
Files, Threads, and Timers options is moved to the Base.

Changes are made related to support for finegrained timestamps.

exit

Purpose: Terminate a process.

Synopsis: #include <stdlib.h>

void exit(int status);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: Austin Group Interpretation 1003.1-2001 #085 is applied, deleting the reference to
removal of files created by tmpfile().

exp, expf, expl

Purpose: Exponential function.

Synopsis: #include <math.h>

double exp(double x);
float expf(float x);
long double expl(long double x);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

exp2, exp2f, exp2l

Purpose: Exponential base 2 functions.

Synopsis: #include <math.h>

double exp2(double x);
float exp2f(float x);
long double exp2l(long double x);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

expm1, expm1f, expm1l

Purpose: Compute exponential functions.

Synopsis: #include <math.h>

double expm1(double x);
float expm1f(float x);
long double expm1l(long double x);

Derivation: First released in Issue 4, Version 2.

Issue 7: No functional changes are made in this issue.

32 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

fabs, fabsf, fabsl

Purpose: Absolute value function.

Synopsis: #include <math.h>

double fabs(double x);
float fabsf(float x);
long double fabsl(long double x);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

fattach

Purpose: Attach a STREAMS-based file descriptor to a file in the file system name space
(STREAMS).

Synopsis:OB XSR #include <stropts.h>

int fattach(int fildes, const char *path);

Derivation: First released in Issue 4, Version 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #143 is applied, allowing
implementations to support pathnames longer than {PATH_MAX}.

The fattach() function is marked obsolescent.

The [ENOTDIR] error condition is clarified to cover the condition where the last
component of a pathname exists but is not a directory or a symbolic link to a
directory.

fchdir

Purpose: Change working directory.

Synopsis: #include <unistd.h>

int fchdir(int fildes);

Derivation: First released in Issue 4, Version 2.

Issue 7: The fchdir() function is moved from the XSI option to the Base.

fchmod

Purpose: Change mode of a file.

Synopsis: #include <sys/stat.h>

int fchmod(int fildes, mode_t mode);

Derivation: First released in Issue 4, Version 2.

Issue 7: No functional changes are made in this issue.

The Authorized Guide to the Single UNIX Specification, Version 4 33

System Interfaces System Interfaces Migration

fchown

Purpose: Change owner and group of a file.

Synopsis: #include <unistd.h>

int fchown(int fildes, uid_t owner, gid_t group);

Derivation: First released in Issue 4, Version 2.

Issue 7: Functionality relating to XSI STREAMS is marked obsolescent.

fclose

Purpose: Close a stream.

Synopsis: #include <stdio.h>

int fclose(FILE *stream);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: Austin Group Interpretation 1003.1-2001 #002 is applied, clarifying the interaction
of file descriptors and streams.

The [ENOSPC] error condition is updated and the [ENOMEM] error is added from
The Open Group Technical Standard, 2006, Extended API Set Part 1.

Changes are made related to support for finegrained timestamps.

fcntl

Purpose: File control.

Synopsis: #include <fcntl.h>

int fcntl(int fildes, int cmd, ...);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: Austin Group Interpretation 1003.1-2001 #150 is applied, clarifying the file status
flags returned when cmd is F_GETFL.

Austin Group Interpretation 1003.1-2001 #171 is applied, adding the
F_DUPFD_CLOEXEC flag.

The optional <unistd.h> header is removed from this function, since <fcntl.h>
now defines SEEK_SET, SEEK_CUR, and SEEK_END as part of the Base.

fdatasync

Purpose: Synchronize the data of a file (REALTIME).

Synopsis:SIO #include <unistd.h>

int fdatasync(int fildes);

Derivation: First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

Issue 7: No functional changes are made in this issue.

34 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

fdetach

Purpose: Detach a name from a STREAMS-based file descriptor (f3STREAMSfP).

Synopsis:OB XSR #include <stropts.h>

int fdetach(const char *path);

Derivation: First released in Issue 4, Version 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #143 is applied, allowing
implementations to support pathnames longer than {PATH_MAX}.

The fdetach() function is marked obsolescent.

The [ENOTDIR] error condition is clarified to cover the condition where the last
component of a pathname exists but is not a directory or a symbolic link to a
directory.

fdim, fdimf, fdiml

Purpose: Compute positive difference between two floating-point numbers.

Synopsis: #include <math.h>

double fdim(double x, double y);
float fdimf(float x, float y);
long double fdiml(long double x, long double y);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

fdopen

Purpose: Associate a stream with a file descriptor.

Synopsis:CX #include <stdio.h>

FILE *fdopen(int fildes, const char *mode);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: SD5-XSH-ERN-149 is applied, adding the {STREAM_MAX} [EMFILE] error
condition.

Changes are made related to support for finegrained timestamps.

fdopendir, opendir

Purpose: Open directory associated with file descriptor.

Synopsis: #include <dirent.h>

DIR *fdopendir(int fd);
DIR *opendir(const char *dirname);

The fdopendir() function is equivalent to the opendir() function except that the
directory is specified by a file descriptor rather than by a name. The file offset
associated with the file descriptor at the time of the call determines which entries
are returned.

The Authorized Guide to the Single UNIX Specification, Version 4 35

System Interfaces System Interfaces Migration

Upon successful return from fdopendir(), the file descriptor is under the control of
the system, and if any attempt is made to close the file descriptor, or to modify the
state of the associated description, other than by means of closedir(), readdir(),
readdir_r(), or rewinddir(), the behavior is undefined. Upon calling closedir() the
file descriptor is closed.

The purpose of the fdopendir() function is to enable opening files in directories
other than the current working directory without exposure to race conditions. Any
part of the path of a file could be changed in parallel to a call to opendir(), resulting
in unspecified behavior.

The following example program searches through a given directory looking for
files whose name does not begin with a dot and whose size is larger than 1 MiB.

#include <stdio.h>
#include <dirent.h>
#include <fcntl.h>
#include <sys/stat.h>
#include <stdint.h>
#include <stdlib.h>
#include <unistd.h>

int
main(int argc, char *argv[])
{

struct stat statbuf;
DIR *d;
struct dirent *dp;
int dfd, ffd;

if ((d = fdopendir((dfd = open("./tmp", O_RDONLY))))
== NULL) {

fprintf(stderr, "Cannot open ./tmp directory\n");
exit(1);

}
while ((dp = readdir(d)) != NULL) {

if (dp->d_name[0] == ’.’)
continue;

/* there is a possible race condition here as the file
* could be renamed between the readdir and the open */
if ((ffd = openat(dfd, dp->d_name, O_RDONLY)) == -1) {

perror(dp->d_name);
continue;

}
if (fstat(ffd, &statbuf) == 0 && statbuf.st_size >

(1024*1024)) {
/* found it ... */
printf("%s: %jdK\n", dp->d_name,

(intmax_t)(statbuf.st_size / 1024));
}
close(ffd);

}
closedir(d); // note this implicitly closes dfd
return 0;

}

36 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

Derivation: First released in Issue 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #143 is applied, allowing
implementations to support pathnames longer than {PATH_MAX}.

SD5-XBD-ERN-4 is applied, changing the definition of the [EMFILE] error.

The fdopendir() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 2.

An additional example is added.

feclearexcept

Purpose: Clear floating-point exception.

Synopsis: #include <fenv.h>

int feclearexcept(int excepts);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

fegetenv, fesetenv

Purpose: Get and set current floating-point environment.

Synopsis: #include <fenv.h>

int fegetenv(fenv_t *envp);
int fesetenv(const fenv_t *envp);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

fegetexceptflag, fesetexceptflag

Purpose: Get and set floating-point status flags.

Synopsis: #include <fenv.h>

int fegetexceptflag(fexcept_t *flagp, int excepts);
int fesetexceptflag(const fexcept_t *flagp, int excepts);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

fegetround, fesetround

Purpose: Get and set current rounding direction.

Synopsis: #include <fenv.h>

int fegetround(void);
int fesetround(int round);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

The Authorized Guide to the Single UNIX Specification, Version 4 37

System Interfaces System Interfaces Migration

feholdexcept

Purpose: Save current floating-point environment.

Synopsis: #include <fenv.h>

int feholdexcept(fenv_t *envp);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

feof

Purpose: Test end-of-file indicator on a stream.

Synopsis: #include <stdio.h>

int feof(FILE *stream);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

feraiseexcept

Purpose: Raise floating-point exception.

Synopsis: #include <fenv.h>

int feraiseexcept(int excepts);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

ferror

Purpose: Test error indicator on a stream.

Synopsis: #include <stdio.h>

int ferror(FILE *stream);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

fetestexcept

Purpose: Test floating-point exception flags.

Synopsis: #include <fenv.h>

int fetestexcept(int excepts);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

38 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

feupdateenv

Purpose: Update floating-point environment.

Synopsis: #include <fenv.h>

int feupdateenv(const fenv_t *envp);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

fflush

Purpose: Flush a stream.

Synopsis: #include <stdio.h>

int fflush(FILE *stream);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: Austin Group Interpretation 1003.1-2001 #002 is applied, clarifying the interaction
of file descriptors and streams.

The [ENOSPC] error condition is updated and the [ENOMEM] error is added from
The Open Group Technical Standard, 2006, Extended API Set Part 1.

The EXAMPLES section is revised.

Changes are made related to support for finegrained timestamps.

ffs

Purpose: Find first set bit.

Synopsis:XSI #include <strings.h>

int ffs(int i);

Derivation: First released in Issue 4, Version 2.

Issue 7: No functional changes are made in this issue.

fgetc

Purpose: Get a byte from a stream.

Synopsis: #include <stdio.h>

int fgetc(FILE *stream);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: Austin Group Interpretation 1003.1-2001 #051 is applied, updating the list of
functions that mark the last data access timestamp for update.

The Authorized Guide to the Single UNIX Specification, Version 4 39

System Interfaces System Interfaces Migration

fgetpos

Purpose: Get current file position information.

Synopsis: #include <stdio.h>

int fgetpos(FILE *restrict stream, fpos_t *restrict pos);

Derivation: First released in Issue 4. Derived from the IEEE Std 1003.1i-1995.

Issue 7: No functional changes are made in this issue.

fgets

Purpose: Get a string from a stream.

Synopsis: #include <stdio.h>

char *fgets(char *restrict s, int n, FILE *restrict stream);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: Austin Group Interpretation 1003.1-2001 #051 is applied, updating the list of
functions that mark the last data access timestamp for update.

fgetwc

Purpose: Get a wide-character code from a stream.

Synopsis: #include <stdio.h>
#include <wchar.h>

wint_t fgetwc(FILE *stream);

Derivation: First released in Issue 4. Derived from the MSE working draft.

Issue 7: Austin Group Interpretation 1003.1-2001 #051 is applied, clarifying the RETURN
VALUE section.

Changes are made related to support for finegrained timestamps.

fgetws

Purpose: Get a wide-character string from a stream.

Synopsis: #include <stdio.h>
#include <wchar.h>

wchar_t *fgetws(wchar_t *restrict ws, int n,
FILE *restrict stream);

Derivation: First released in Issue 4. Derived from the MSE working draft.

Issue 7: Austin Group Interpretation 1003.1-2001 #051 is applied, clarifying the RETURN
VALUE section.

Changes are made related to support for finegrained timestamps.

40 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

fileno

Purpose: Map a stream pointer to a file descriptor.

Synopsis:CX #include <stdio.h>

int fileno(FILE *stream);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: SD5-XBD-ERN-99 is applied, changing the definition of the [EBADF] error.

flockfile, ftrylockfile, funlockfile

Purpose: Stdio locking functions.

Synopsis:CX #include <stdio.h>

void flockfile(FILE *file);
int ftrylockfile(FILE *file);
void funlockfile(FILE *file);

Derivation: First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

Issue 7: The flockfile(), ftrylockfile(), and funlockfile() functions are moved from the Thread-
Safe Functions option to the Base.

floor, floorf, floorl

Purpose: Floor function.

Synopsis: #include <math.h>

double floor(double x);
float floorf(float x);
long double floorl(long double x);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

fma, fmaf, fmal

Purpose: Floating-point multiply-add.

Synopsis: #include <math.h>

double fma(double x, double y, double z);
float fmaf(float x, float y, float z);
long double fmal(long double x, long double y, long double z);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: ISO/IEC 9899: 1999 standard, Technical Corrigendum 2 #57 (SD5-XSH-ERN-69) is
applied, adding a ‘‘may fail’’ range error for non-MX systems.

The Authorized Guide to the Single UNIX Specification, Version 4 41

System Interfaces System Interfaces Migration

fmax, fmaxf, fmaxl

Purpose: Determine maximum numeric value of two floating-point numbers.

Synopsis: #include <math.h>

double fmax(double x, double y);
float fmaxf(float x, float y);
long double fmaxl(long double x, long double y);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: Austin Group Interpretation 1003.1-2001 #007 is applied, adding MX shading
where the text refers to NaNs.

fmemopen

Purpose: Open a memory buffer stream.

Synopsis:CX #include <stdio.h>

FILE *fmemopen(void *restrict buf, size_t size,
const char *restrict mode);

The fmemopen() function associates the buffer given by the buf and size arguments
with a stream.

This interface has been introduced to eliminate many of the errors encountered in
the construction of strings, notably overflowing of strings. This interface prevents
overflow.

Derivation: First released in Issue 7. Derived from The Open Group Technical Standard, 2006,
Extended API Set Part 1.

Issue 7: First released in Issue 7.

fmin, fminf, fminl

Purpose: Determine minimum numeric value of two floating-point numbers.

Synopsis: #include <math.h>

double fmin(double x, double y);
float fminf(float x, float y);
long double fminl(long double x, long double y);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: Austin Group Interpretation 1003.1-2001 #008 is applied, adding MX shading
where the text refers to NaNs.

fmod, fmodf, fmodl

Purpose: Floating-point remainder value function.

Synopsis: #include <math.h>

double fmod(double x, double y);
float fmodf(float x, float y);
long double fmodl(long double x, long double y);

42 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

fmtmsg

Purpose: Display a message in the specified format on standard error and/or a system
console.

Synopsis:XSI #include <fmtmsg.h>

int fmtmsg(long classification, const char *label,
int severity, const char *text,
const char *action, const char *tag);

Derivation: First released in Issue 4, Version 2.

Issue 7: No functional changes are made in this issue.

fnmatch

Purpose: Match a filename or a pathname.

Synopsis: #include <fnmatch.h>

int fnmatch(const char *pattern, const char *string,
int flags);

Derivation: First released in Issue 4. Derived from the .

Issue 7: No functional changes are made in this issue.

fopen

Purpose: Open a stream.

Synopsis: #include <stdio.h>

FILE *fopen(const char *restrict filename,
const char *restrict mode);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: Austin Group Interpretation 1003.1-2001 #025 is applied, clarifying the file creation
mode.

Austin Group Interpretation 1003.1-2001 #143 is applied, allowing
implementations to support pathnames longer than {PATH_MAX}.

Austin Group Interpretation 1003.1-2001 #159 is applied, clarifying requirements
for the flags set on the open file description.

SD5-XBD-ERN-4 is applied, changing the definition of the [EMFILE] error.

SD5-XSH-ERN-149 is applied, changing the {STREAM_MAX} [EMFILE] error
condition from a ‘‘may fail’’ to a ‘‘shall fail’’.

Changes are made related to support for finegrained timestamps.

The Authorized Guide to the Single UNIX Specification, Version 4 43

System Interfaces System Interfaces Migration

fork

Purpose: Create a new process.

Synopsis: #include <unistd.h>

pid_t fork(void);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: Austin Group Interpretation 1003.1-2001 #080 is applied, clarifying the status of
asynchronous input and asynchronous output operations and asynchronous
control lists in the DESCRIPTION.

Functionality relating to the Asynchronous Input and Output, Memory Mapped
Files, Timers, and Threads options is moved to the Base.

Functionality relating to message catalog descriptors is moved from the XSI option
to the Base.

fpathconf, pathconf

Purpose: Get configurable pathname variables.

Synopsis: #include <unistd.h>

long fpathconf(int fildes, int name);
long pathconf(const char *path, int name);

Derivation: First released in Issue 3. Included for alignment with the IEEE Std 1003.1-1988
(POSIX.1).

Issue 7: Austin Group Interpretation 1003.1-2001 #143 is applied, allowing
implementations to support pathnames longer than {PATH_MAX}.

Austin Group Interpretation 1003.1-2001 #160 is applied, clarifying the
requirements related to variables that have no limit.

Changes are made related to support for finegrained timestamps.

The [ENOTDIR] error condition is clarified to cover the condition where the last
component of a pathname exists but is not a directory or a symbolic link to a
directory.

fpclassify

Purpose: Classify real floating type.

Synopsis: #include <math.h>

int fpclassify(real-floating x);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

44 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

dprintf, fprintf, printf, snprintf, sprintf

Purpose: Print formatted output.

Synopsis: #include <stdio.h>

CX int dprintf(int fildes, const char *restrict format, ...);
int fprintf(FILE *restrict stream,

const char *restrict format, ...);
int printf(const char *restrict format, ...);
int snprintf(char *restrict s, size_t n,

const char *restrict format, ...);
int sprintf(char *restrict s,

const char *restrict format, ...);

The dprintf() function is equivalent to the fprintf() function, except that dprintf()
writes output to the file associated with the file descriptor specified by the fildes
argument rather than placing output on a stream.

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: Austin Group Interpretation 1003.1-2001 #161 is applied, updating the
DESCRIPTION of the 0 flag.

Austin Group Interpretation 1003.1-2001 #170 is applied, changing the [EILSEQ]
error condition from a ‘‘may fail’’ to a ‘‘shall fail’’.

ISO/IEC 9899: 1999 standard, Technical Corrigendum 2 #68 (SD5-XSH-ERN-70) is
applied, revising the description of g and G.

The dprintf() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 1.

Functionality relating to the %n$ form of conversion specification and the
<apostrophe> flag is moved from the XSI option to the Base.

Changes are made related to support for finegrained timestamps.

fputc

Purpose: Put a byte on a stream.

Synopsis: #include <stdio.h>

int fputc(int c, FILE *stream);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: Changes are made related to support for finegrained timestamps.

fputs

Purpose: Put a string on a stream.

Synopsis: #include <stdio.h>

int fputs(const char *restrict s, FILE *restrict stream);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: Changes are made related to support for finegrained timestamps.

The Authorized Guide to the Single UNIX Specification, Version 4 45

System Interfaces System Interfaces Migration

fputwc

Purpose: Put a wide-character code on a stream.

Synopsis: #include <stdio.h>
#include <wchar.h>

wint_t fputwc(wchar_t wc, FILE *stream);

Derivation: First released in Issue 4. Derived from the MSE working draft.

Issue 7: Changes are made related to support for finegrained timestamps.

fputws

Purpose: Put a wide-character string on a stream.

Synopsis: #include <stdio.h>
#include <wchar.h>

int fputws(const wchar_t *restrict ws, FILE *restrict stream);

Derivation: First released in Issue 4. Derived from the MSE working draft.

Issue 7: Changes are made related to support for finegrained timestamps.

fread

Purpose: Binary input.

Synopsis: #include <stdio.h>

size_t fread(void *restrict ptr, size_t size, size_t nitems,
FILE *restrict stream);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: Changes are made related to support for finegrained timestamps.

free

Purpose: Free allocated memory.

Synopsis: #include <stdlib.h>

void free(void *ptr);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: The DESCRIPTION is updated to clarify that if the pointer returned is not by a
function that allocates memory as if by malloc(), then the behavior is undefined.

freeaddrinfo, getaddrinfo

Purpose: Get address information.

Synopsis: #include <sys/socket.h>
#include <netdb.h>

void freeaddrinfo(struct addrinfo *ai);
int getaddrinfo(const char *restrict nodename,

const char *restrict servname,
const struct addrinfo *restrict hints,
struct addrinfo **restrict res);

46 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

Derivation: First released in Issue 6. Derived from the Commands and Utilities, Issue 5
(XCU5).

Issue 7: Austin Group Interpretation 1003.1-2001 #013 is applied, removing the
[EAI_OVERFLOW] error code.

Austin Group Interpretation 1003.1-2001 #146 is applied, eliminating the use of
‘‘may’’ in relation to the hints argument.

An example is added.

freelocale

Purpose: Free resources allocated for a locale object.

Synopsis:CX #include <locale.h>

void freelocale(locale_t locobj);

The freelocale() function causes the resources allocated for a locale object returned
by a call to the newlocale() or duplocale() functions to be released.

The following example shows a code fragment to free a locale object created by
newlocale():

#include <locale.h>
...

/* Every locale object allocated with newlocale() should be
* freed using freelocale():
*/

locale_t loc;

/* Get the locale. */

loc = newlocale (LC_CTYPE_MASK | LC_TIME_MASK, "locname", NULL);

/* ... Use the locale object ... */
...

/* Free the locale object resources. */
freelocale (loc);

Derivation: First released in Issue 7. Derived from The Open Group Technical Standard, 2006,
Extended API Set Part 4.

Issue 7: First released in Issue 7.

freopen

Purpose: Open a stream.

Synopsis: #include <stdio.h>

FILE *freopen(const char *restrict filename,
const char *restrict mode, FILE *restrict stream);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: Austin Group Interpretation 1003.1-2001 #043 is applied, clarifying that the
freopen() function allocates a file descriptor as per open().

The Authorized Guide to the Single UNIX Specification, Version 4 47

System Interfaces System Interfaces Migration

Austin Group Interpretation 1003.1-2001 #143 is applied, allowing
implementations to support pathnames longer than {PATH_MAX}.

Austin Group Interpretation 1003.1-2001 #159 is applied, clarifying requirements
for the flags set on the open file description.

SD5-XBD-ERN-4 is applied, changing the definition of the [EMFILE] error.

SD5-XSH-ERN-150 is applied, clarifying the DESCRIPTION.

SD5-XSH-ERN-219 is applied, adding advice to the APPLICATION USAGE
relating to the use of a NULL filename argument.

frexp, frexpf, frexpl

Purpose: Extract mantissa and exponent from a double precision number.

Synopsis: #include <math.h>

double frexp(double num, int *exp);
float frexpf(float num, int *exp);
long double frexpl(long double num, int *exp);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

fscanf, scanf, sscanf

Purpose: Convert formatted input.

Synopsis: #include <stdio.h>

int fscanf(FILE *restrict stream,
const char *restrict format, ...);

int scanf(const char *restrict format, ...);
int sscanf(const char *restrict s,

const char *restrict format, ...);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: Austin Group Interpretation 1003.1-2001 #170 is applied, changing the [EILSEQ]
error condition from a ‘‘may fail’’ to a ‘‘shall fail’’.

SD5-XSH-ERN-9 is applied, correcting fscanf() to scanf() in the DESCRIPTION.

SD5-XSH-ERN-132 is applied, adding the assignment-allocation character ’m’.

Functionality relating to the %n$ form of conversion specification is moved from
the XSI option to the Base.

Changes are made related to support for finegrained timestamps.

fseek, fseeko

Purpose: Reposition a file-position indicator in a stream.

Synopsis: #include <stdio.h>

int fseek(FILE *stream, long offset, int whence);
CX int fseeko(FILE *stream, off_t offset, int whence);

48 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: Changes are made related to support for finegrained timestamps.

fsetpos

Purpose: Set current file position.

Synopsis: #include <stdio.h>

int fsetpos(FILE *stream, const fpos_t *pos);

Derivation: First released in Issue 4. Derived from the IEEE Std 1003.1i-1995.

Issue 7: SD5-XSH-ERN-220 is applied, changing the first [EPIPE] to [ESPIPE].

fstat

Purpose: Get file status.

Synopsis: #include <sys/stat.h>

int fstat(int fildes, struct stat *buf);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: XSH-SD5-ERN-161 is applied, updating the DESCRIPTION to clarify to which file
types st_nlink applies.

Changes are made related to support for finegrained timestamps.

fstatat, lstat, stat

Purpose: Get file status.

Synopsis: #include <sys/stat.h>

int fstatat(int fd, const char *restrict path,
struct stat *restrict buf, int flag);

int lstat(const char *restrict path,
struct stat *restrict buf);

int stat(const char *restrict path,
struct stat *restrict buf);

The fstatat() function is equivalent to the stat() and lstat() functions, except in the
case where path specifies a relative path. In this case the status is retrieved from a
file relative to the directory associated with the file descriptor fd instead of the
current working directory. If the file descriptor was opened without O_SEARCH,
the function checks whether directory searches are permitted using the current
permissions of the directory underlying the file descriptor. If the file descriptor was
opened with O_SEARCH, the function does not perform the check.

The AT_SYMLINK_NOFOLLOW flag controls whether fchownat() behaves like
stat() or lstat(): if AT_SYMLINK_NOFOLLOW is set and path names a symbolic
link, the status of the symbolic link is returned.

The purpose of the fstatat() function is to obtain the status of files in directories
other than the current working directory without exposure to race conditions. Any
part of the path of a file could be changed in parallel to a call to stat() or lstat(),
resulting in unspecified behavior. By opening a file descriptor for the target
directory and using the fstatat() function it can be guaranteed that the file for
which status is returned is located relative to the desired directory.

The Authorized Guide to the Single UNIX Specification, Version 4 49

System Interfaces System Interfaces Migration

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: Austin Group Interpretation 1003.1-2001 #143 is applied, allowing
implementations to support pathnames longer than {PATH_MAX}.

XSH-SD5-ERN-161 is applied, updating the DESCRIPTION to clarify to which file
types st_nlink applies.

The fstatat() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 2.

Changes are made related to support for finegrained timestamps.

The lstat() function is now required to return meaningful data for symbolic links in
all stat structure fields, except for the permission bits of st_mode.

The [ENOTDIR] error condition is clarified to cover the condition where the last
component of a pathname exists but is not a directory or a symbolic link to a
directory.

fstatvfs, statvfs

Purpose: Get file system information.

Synopsis: #include <sys/statvfs.h>

int fstatvfs(int fildes, struct statvfs *buf);
int statvfs(const char *restrict path,

struct statvfs *restrict buf);

Derivation: First released in Issue 4, Version 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #143 is applied, allowing
implementations to support pathnames longer than {PATH_MAX}.

SD5-XSH-ERN-68 is applied, correcting the EXAMPLES section.

The fstatvfs() and statvfs() functions are moved from the XSI option to the Base.

The [ENOTDIR] error condition is clarified to cover the condition where the last
component of a pathname exists but is not a directory or a symbolic link to a
directory.

fsync

Purpose: Synchronize changes to a file.

Synopsis:FSC #include <unistd.h>

int fsync(int fildes);

Derivation: First released in Issue 3.

Issue 7: No functional changes are made in this issue.

50 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

ftell, ftello

Purpose: Return a file offset in a stream.

Synopsis: #include <stdio.h>

long ftell(FILE *stream);
CX off_t ftello(FILE *stream);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

ftok

Purpose: Generate an IPC key.

Synopsis:XSI #include <sys/ipc.h>

key_t ftok(const char *path, int id);

Derivation: First released in Issue 4, Version 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #143 is applied, allowing
implementations to support pathnames longer than {PATH_MAX}.

The [ENOTDIR] error condition is clarified to cover the condition where the last
component of a pathname exists but is not a directory or a symbolic link to a
directory.

ftruncate

Purpose: Truncate a file to a specified length.

Synopsis: #include <unistd.h>

int ftruncate(int fildes, off_t length);

Derivation: First released in Issue 4, Version 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #056 is applied, revising the ERRORS
section (although the [EINVAL] ‘‘may fail’’ error was subsequently removed
during review of the XSI option).

Functionality relating to the Memory Protection and Memory Mapped Files
options is moved to the Base.

The DESCRIPTION is updated so that a call to ftruncate() when the file is smaller
than the size requested will increase the size of the file. Previously, non-XSI-
conforming implementations were allowed to increase the size of the file or fail.

Changes are made related to support for finegrained timestamps.

The Authorized Guide to the Single UNIX Specification, Version 4 51

System Interfaces System Interfaces Migration

ftw

Purpose: Traverse (walk) a file tree.

Synopsis:OB XSI #include <ftw.h>

int ftw(const char *path, int (*fn)(const char *,
const struct stat *ptr, int flag), int ndirs);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: Austin Group Interpretation 1003.1-2001 #143 is applied, allowing
implementations to support pathnames longer than {PATH_MAX}.

The ftw() function is marked obsolescent. Applications should use the nftw()
function instead.

futimens, utimensat, utimes

Purpose: Set file access and modification times.

Synopsis: #include <sys/stat.h>

int futimens(int fd, const struct timespec times[2]);
int utimensat(int fd, const char *path,

const struct timespec times[2], int flag);

XSI #include <sys/time.h>

int utimes(const char *path, const struct timeval times[2]);

The futimens() and utimensat() functions set the access and modification times of a
file to the values of the times argument. The futimens() function changes the times
of the file associated with the file descriptor fd. The utimensat() function changes
the times of the file pointed to by the path argument, relative to the directory
associated with the file descriptor fd.

The times argument is an array of two timespec structures. The first array member
represents the date and time of last access, and the second member represents the
date and time of last modification. The times in the timespec structure are
measured in seconds and nanoseconds since the Epoch. The file’s relevant
timestamp is set to the greatest value supported by the file system that is not
greater than the specified time.

If the tv_nsec field of a timespec structure has the special value UTIME_NOW, the
file’s relevant timestamp is set to the greatest value supported by the file system
that is not greater than the current time. If the tv_nsec field has the special value
UTIME_OMIT, the file’s relevant timestamp is not changed. In either case, the
tv_sec field is ignored.

If utimensat() is passed a relative path in the path argument, the file to be used is
relative to the directory associated with the file descriptor fd instead of the current
working directory. If the file descriptor was opened without O_SEARCH, the
function checks whether directory searches are permitted using the current
permissions of the directory underlying the file descriptor. If the file descriptor was
opened with O_SEARCH, the function does not perform the check.

The AT_SYMLINK_NOFOLLOW flag can be used to specify that if path names a
symbolic link, then the access and modification times of the symbolic link are

52 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

changed.

The purpose of the utimensat() function is to set the access and modification time
of files in directories other than the current working directory without exposure to
race conditions. Any part of the path of a file could be changed in parallel to a call
to utimes(), resulting in unspecified behavior. By opening a file descriptor for the
target directory and using the utimensat() function it can be guaranteed that the
changed file is located relative to the desired directory.

Derivation: First released in Issue 4, Version 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #143 is applied, allowing
implementations to support pathnames longer than {PATH_MAX}.

The LEGACY marking is removed from utimes().

The utimensat() function (renamed from futimesat()) is added from The Open
Group Technical Standard, 2006, Extended API Set Part 2, and changed to allow
modifying a symbolic link by adding a flag argument.

The futimens() function is added.

Changes are made related to support for finegrained timestamps.

The [ENOTDIR] error condition is clarified to cover the condition where the last
component of a pathname exists but is not a directory or a symbolic link to a
directory.

fwide

Purpose: Set stream orientation.

Synopsis: #include <stdio.h>
#include <wchar.h>

int fwide(FILE *stream, int mode);

Derivation: First released in Issue 5. Included for alignment with .

Issue 7: No functional changes are made in this issue.

fwprintf, swprintf, wprintf

Purpose: Print formatted wide-character output.

Synopsis: #include <stdio.h>
#include <wchar.h>

int fwprintf(FILE *restrict stream,
const wchar_t *restrict format, ...);

int swprintf(wchar_t *restrict ws, size_t n,
const wchar_t *restrict format, ...);

int wprintf(const wchar_t *restrict format, ...);

Derivation: First released in Issue 5. Included for alignment with .

Issue 7: Austin Group Interpretation 1003.1-2001 #161 is applied, updating the
DESCRIPTION of the 0 flag.

Austin Group Interpretation 1003.1-2001 #170 is applied, changing the [EILSEQ]
error condition from a ‘‘may fail’’ to a ‘‘shall fail’’.

ISO/IEC 9899: 1999 standard, Technical Corrigendum 2 #68 (SD5-XSH-ERN-70) is

The Authorized Guide to the Single UNIX Specification, Version 4 53

System Interfaces System Interfaces Migration

applied, revising the description of g and G.

Functionality relating to the "%n$" form of conversion specification and the
<apostrophe> flag is moved from the XSI option to the Base.

The [EOVERFLOW] error is added for swprintf().

Changes are made related to support for finegrained timestamps.

fwrite

Purpose: Binary output.

Synopsis: #include <stdio.h>

size_t fwrite(const void *restrict ptr, size_t size,
size_t nitems, FILE *restrict stream);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: Changes are made related to support for finegrained timestamps.

fwscanf, swscanf, wscanf

Purpose: Convert formatted wide-character input.

Synopsis: #include <stdio.h>
#include <wchar.h>

int fwscanf(FILE *restrict stream,
const wchar_t *restrict format, ...);

int swscanf(const wchar_t *restrict ws,
const wchar_t *restrict format, ...);

int wscanf(const wchar_t *restrict format, ...);

Derivation: First released in Issue 5. Included for alignment with .

Issue 7: Austin Group Interpretation 1003.1-2001 #170 is applied, changing the [EILSEQ]
error condition from a ‘‘may fail’’ to a ‘‘shall fail’’.

SD5-XSH-ERN-132 is applied, adding the assignment-allocation character ’m’.

Functionality relating to the "%n$" form of conversion specification is moved from
the XSI option to the Base.

Changes are made related to support for finegrained timestamps.

gai_strerror

Purpose: Address and name information error description.

Synopsis: #include <netdb.h>

const char *gai_strerror(int ecode);

Derivation: First released in Issue 6. Derived from the Commands and Utilities, Issue 5
(XCU5).

Issue 7: No functional changes are made in this issue.

54 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

getc

Purpose: Get a byte from a stream.

Synopsis: #include <stdio.h>

int getc(FILE *stream);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

getc_unlocked, getchar_unlocked, putc_unlocked, putchar_unlocked

Purpose: Stdio with explicit client locking.

Synopsis:CX #include <stdio.h>

int getc_unlocked(FILE *stream);
int getchar_unlocked(void);
int putc_unlocked(int c, FILE *stream);
int putchar_unlocked(int c);

Derivation: First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

Issue 7: The getc_unlocked(), getchar_unlocked(), putc_unlocked(), and putchar_unlocked()
functions are moved from the Thread-Safe Functions option to the Base.

getchar

Purpose: Get a byte from a stdin stream.

Synopsis: #include <stdio.h>

int getchar(void);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

getcwd

Purpose: Get the pathname of the current working directory.

Synopsis: #include <unistd.h>

char *getcwd(char *buf, size_t size);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: Austin Group Interpretation 1003.1-2001 #140 is applied, changing the text for
consistency with the pwd utility, adding text to address the case where the current
directory is deeper in the file hierarchy than {PATH_MAX} bytes, and adding the
requirements relating to pathnames beginning with two <slash> characters.

The Authorized Guide to the Single UNIX Specification, Version 4 55

System Interfaces System Interfaces Migration

getdate

Purpose: Convert user format date and time.

Synopsis:XSI #include <time.h>

struct tm *getdate(const char *string);

Derivation: First released in Issue 4, Version 2.

Issue 7: The description of the getdate_err value is expanded.

getdelim, getline

Purpose: Read a delimited record from stream.

Synopsis:CX #include <stdio.h>

ssize_t getdelim(char **restrict lineptr, size_t *restrict n,
int delimiter, FILE *restrict stream);

ssize_t getline(char **restrict lineptr, size_t *restrict n,
FILE *restrict stream);

The getdelim() function reads from stream until it encounters a character matching
the delimiter character.

The getline() function is equivalent to the getdelim() function with the delimiter
character equal to the <newline> character.

These functions are widely used to solve the problem that the fgets() function has
with long lines. The functions automatically enlarge the target buffers if needed.
These are especially useful since they reduce code needed for applications.

Application writers should note that setting *lineptr to a null pointer and *n to zero
are allowed and a recommended way to start parsing a file.

The ferror() or feof() functions should be used to distinguish between an error
condition and an end-of-file condition.

Although a NUL terminator is always supplied after the line, note that
strlen(*lineptr) will be smaller than the return value if the line contains embedded
NUL characters.

Derivation: First released in Issue 7. Derived from The Open Group Technical Standard, 2006,
Extended API Set Part 1.

Issue 7: First released in Issue 7.

getegid

Purpose: Get the effective group ID.

Synopsis: #include <unistd.h>

gid_t getegid(void);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

56 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

getenv

Purpose: Get value of an environment variable.

Synopsis: #include <stdlib.h>

char *getenv(const char *name);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: Austin Group Interpretation 1003.1-2001 #062 is applied, clarifying that a call to
putenv() may also cause the string to be overwritten.

Austin Group Interpretation 1003.1-2001 #148 is applied, adding the FUTURE
DIRECTIONS.

geteuid

Purpose: Get the effective user ID.

Synopsis: #include <unistd.h>

uid_t geteuid(void);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

getgid

Purpose: Get the real group ID.

Synopsis: #include <unistd.h>

gid_t getgid(void);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

getgrgid, getgrgid_r

Purpose: Get group database entry for a group ID.

Synopsis: #include <grp.h>

struct group *getgrgid(gid_t gid);
int getgrgid_r(gid_t gid, struct group *grp, char *buffer,

size_t bufsize, struct group **result);

Derivation: First released in Issue 1. Derived from System V Release 2.0.

Issue 7: SD5-XBD-ERN-4 is applied, changing the definition of the [EMFILE] error.

SD5-XSH-ERN-166 is applied, changing sysconf (_SC_GETGR_R_SIZE_MAX) from
the maximum size to an initial value suggested for the size, and adding an
example of its use to the EXAMPLES section.

The getgrgid_r() function is moved from the Thread-Safe Functions option to the
Base.

A minor addition is made to the EXAMPLES section, reminding the application
developer to free memory allocated as if by malloc().

The Authorized Guide to the Single UNIX Specification, Version 4 57

System Interfaces System Interfaces Migration

getgrnam, getgrnam_r

Purpose: Search group database for a name.

Synopsis: #include <grp.h>

struct group *getgrnam(const char *name);
int getgrnam_r(const char *name, struct group *grp,

char *buffer, size_t bufsize,
struct group **result);

Derivation: First released in Issue 1. Derived from System V Release 2.0.

Issue 7: Austin Group Interpretation 1003.1-2001 #081 is applied, clarifying the RETURN
VALUE section.

SD5-XBD-ERN-4 is applied, changing the definition of the [EMFILE] error.

SD5-XSH-ERN-166 is applied, changing sysconf (_SC_GETGR_R_SIZE_MAX) from
the maximum size to an initial value suggested for the size, and adding an
example of its use to the EXAMPLES section.

The getgrnam_r() function is moved from the Thread-Safe Functions option to the
Base.

A minor addition is made to the EXAMPLES section, reminding the application
developer to free memory allocated as if by malloc().

getgroups

Purpose: Get supplementary group IDs.

Synopsis: #include <unistd.h>

int getgroups(int gidsetsize, gid_t grouplist[]);

Derivation: First released in Issue 3. Included for alignment with the IEEE Std 1003.1-1988
(POSIX.1).

Issue 7: No functional changes are made in this issue.

gethostid

Purpose: Get an identifier for the current host.

Synopsis:XSI #include <unistd.h>

long gethostid(void);

Derivation: First released in Issue 4, Version 2.

Issue 7: No functional changes are made in this issue.

58 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

gethostname

Purpose: Get name of current host.

Synopsis: #include <unistd.h>

int gethostname(char *name, size_t namelen);

Derivation: First released in Issue 6. Derived from the Commands and Utilities, Issue 5
(XCU5).

Issue 7: No functional changes are made in this issue.

getitimer, setitimer

Purpose: Get and set value of interval timer.

Synopsis:OB XSI #include <sys/time.h>

int getitimer(int which, struct itimerval *value);
int setitimer(int which,

const struct itimerval *restrict value,
struct itimerval *restrict ovalue);

Derivation: First released in Issue 4, Version 2.

Issue 7: The getitimer() and setitimer() functions are marked obsolescent. Applications
should use the timer_gettime() and timer_settime() functions, respectively.

getlogin, getlogin_r

Purpose: Get login name.

Synopsis: #include <unistd.h>

char *getlogin(void);
int getlogin_r(char *name, size_t namesize);

Derivation: First released in Issue 1. Derived from System V Release 2.0.

Issue 7: SD5-XBD-ERN-4 is applied, changing the definition of the [EMFILE] error.

The getlogin_r() function is moved from the Thread-Safe Functions option to the
Base.

getmsg, getpmsg

Purpose: Receive next message from a STREAMS file (STREAMS).

Synopsis:OB XSR #include <stropts.h>

int getmsg(int fildes, struct strbuf *restrict ctlptr,
struct strbuf *restrict dataptr, int *restrict flagsp);

int getpmsg(int fildes, struct strbuf *restrict ctlptr,
struct strbuf *restrict dataptr, int *restrict bandp,
int *restrict flagsp);

Derivation: First released in Issue 4, Version 2.

The Authorized Guide to the Single UNIX Specification, Version 4 59

System Interfaces System Interfaces Migration

Issue 7: The getmsg() and getpmsg() functions are marked obsolescent.

getnameinfo

Purpose: Get name information.

Synopsis: #include <sys/socket.h>
#include <netdb.h>

int getnameinfo(const struct sockaddr *restrict sa,
socklen_t salen, char *restrict node,
socklen_t nodelen, char *restrict service,
socklen_t servicelen, int flags);

Derivation: First released in Issue 6. Derived from the Commands and Utilities, Issue 5
(XCU5).

Issue 7: SD5-XSH-ERN-127 is applied, clarifying the behavior if the address is the IPv6
unspecified address.

getopt, optarg, opterr, optind, optopt

Purpose: Command option parsing.

Synopsis: #include <unistd.h>

int getopt(int argc, char * const argv[], const char *optstring);
extern char *optarg;
extern int opterr, optind, optopt;

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

getpeername

Purpose: Get the name of the peer socket.

Synopsis: #include <sys/socket.h>

int getpeername(int socket, struct sockaddr *restrict address,
socklen_t *restrict address_len);

Derivation: First released in Issue 6. Derived from the Commands and Utilities, Issue 5
(XCU5).

Issue 7: No functional changes are made in this issue.

getpgid

Purpose: Get the process group ID for a process.

Synopsis: #include <unistd.h>

pid_t getpgid(pid_t pid);

Derivation: First released in Issue 4, Version 2.

Issue 7: The getpgid() function is moved from the XSI option to the Base.

60 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

getpgrp

Purpose: Get the process group ID of the calling process.

Synopsis: #include <unistd.h>

pid_t getpgrp(void);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

getpid

Purpose: Get the process ID.

Synopsis: #include <unistd.h>

pid_t getpid(void);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

getppid

Purpose: Get the parent process ID.

Synopsis: #include <unistd.h>

pid_t getppid(void);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

getpriority, setpriority

Purpose: Get and set the nice value.

Synopsis:XSI #include <sys/resource.h>

int getpriority(int which, id_t who);
int setpriority(int which, id_t who, int value);

Derivation: First released in Issue 4, Version 2.

Issue 7: No functional changes are made in this issue.

getpwnam, getpwnam_r

Purpose: Search user database for a name.

Synopsis: #include <pwd.h>

struct passwd *getpwnam(const char *name);
int getpwnam_r(const char *name, struct passwd *pwd,

char *buffer, size_t bufsize,
struct passwd **result);

Derivation: First released in Issue 1. Derived from System V Release 2.0.

The Authorized Guide to the Single UNIX Specification, Version 4 61

System Interfaces System Interfaces Migration

Issue 7: SD5-XBD-ERN-4 is applied, changing the definition of the [EMFILE] error.

SD5-XSH-ERN-166 is applied, changing sysconf (_SC_GETPW_R_SIZE_MAX) from
the maximum size to an initial value suggested for the size, and adding an
example of its use to the EXAMPLES section.

The getpwnam_r() function is moved from the Thread-Safe Functions option to the
Base.

A minor addition is made to the EXAMPLES section, reminding the application
developer to free memory allocated as if by malloc().

getpwuid, getpwuid_r

Purpose: Search user database for a user ID.

Synopsis: #include <pwd.h>

struct passwd *getpwuid(uid_t uid);
int getpwuid_r(uid_t uid, struct passwd *pwd, char *buffer,

size_t bufsize, struct passwd **result);

Derivation: First released in Issue 1. Derived from System V Release 2.0.

Issue 7: SD5-XBD-ERN-4 is applied, changing the definition of the [EMFILE] error.

SD5-XSH-ERN-166 is applied, changing sysconf (_SC_GETPW_R_SIZE_MAX) from
the maximum size to an initial value suggested for the size, and adding an
example of its use to the EXAMPLES section.

The getpwuid_r() function is moved from the Thread-Safe Functions option to the
Base.

A minor addition is made to the EXAMPLES section, reminding the application
developer to free memory allocated as if by malloc().

getrlimit, setrlimit

Purpose: Control maximum resource consumption.

Synopsis:XSI #include <sys/resource.h>

int getrlimit(int resource, struct rlimit *rlp);
int setrlimit(int resource, const struct rlimit *rlp);

Derivation: First released in Issue 4, Version 2.

Issue 7: No functional changes are made in this issue.

getrusage

Purpose: Get information about resource utilization.

Synopsis:XSI #include <sys/resource.h>

int getrusage(int who, struct rusage *r_usage);

Derivation: First released in Issue 4, Version 2.

62 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

Issue 7: No functional changes are made in this issue.

gets

Purpose: Get a string from a stdin stream.

Synopsis:OB #include <stdio.h>

char *gets(char *s);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: Austin Group Interpretation 1003.1-2001 #051 is applied, clarifying the RETURN
VALUE section.

The gets() function is marked obsolescent. Applications should use the fgets()
function instead.

Changes are made related to support for finegrained timestamps.

getsid

Purpose: Get the process group ID of a session leader.

Synopsis: #include <unistd.h>

pid_t getsid(pid_t pid);

Derivation: First released in Issue 4, Version 2.

Issue 7: The getsid() function is moved from the XSI option to the Base.

getsockname

Purpose: Get the socket name.

Synopsis: #include <sys/socket.h>

int getsockname(int socket, struct sockaddr *restrict address,
socklen_t *restrict address_len);

Derivation: First released in Issue 6. Derived from the Commands and Utilities, Issue 5
(XCU5).

Issue 7: No functional changes are made in this issue.

getsockopt

Purpose: Get the socket options.

Synopsis: #include <sys/socket.h>

int getsockopt(int socket, int level,
int option_name, void *restrict option_value,
socklen_t *restrict option_len);

Derivation: First released in Issue 6. Derived from the Commands and Utilities, Issue 5
(XCU5).

Issue 7: Austin Group Interpretation 1003.1-2001 #158 is applied, removing text relating to
socket options that is now in XSH Section 2.10.16 .

The Authorized Guide to the Single UNIX Specification, Version 4 63

System Interfaces System Interfaces Migration

getsubopt

Purpose: Parse suboption arguments from a string.

Synopsis: #include <stdlib.h>

int getsubopt(char **optionp, char * const *keylistp,
char **valuep);

Derivation: First released in Issue 4, Version 2.

Issue 7: The getsubopt() function is moved from the XSI option to the Base.

gettimeofday

Purpose: Get the date and time.

Synopsis:OB XSI #include <sys/time.h>

int gettimeofday(struct timeval *restrict tp,
void *restrict tzp);

Derivation: First released in Issue 4, Version 2.

Issue 7: The gettimeofday() function is marked obsolescent. Applications should use the
clock_gettime() function instead.

getuid

Purpose: Get a real user ID.

Synopsis: #include <unistd.h>

uid_t getuid(void);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

getwc

Purpose: Get a wide character from a stream.

Synopsis: #include <stdio.h>
#include <wchar.h>

wint_t getwc(FILE *stream);

Derivation: First released as a World-wide Portability Interface in Issue 4. Derived from the
MSE working draft.

Issue 7: No functional changes are made in this issue.

getwchar

Purpose: Get a wide character from a stdin stream.

Synopsis: #include <wchar.h>

wint_t getwchar(void);

Derivation: First released as a World-wide Portability Interface in Issue 4. Derived from the
MSE working draft.

64 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

Issue 7: No functional changes are made in this issue.

glob, globfree

Purpose: Generate pathnames matching a pattern.

Synopsis: #include <glob.h>

int glob(const char *restrict pattern, int flags,
int(*errfunc)(const char *epath, int eerrno),
glob_t *restrict pglob);

void globfree(glob_t *pglob);

Derivation: First released in Issue 4. Derived from the .

Issue 7: No functional changes are made in this issue.

gmtime, gmtime_r

Purpose: Convert a time value to a broken-down UTC time.

Synopsis: #include <time.h>

struct tm *gmtime(const time_t *timer);
CX struct tm *gmtime_r(const time_t *restrict timer,

struct tm *restrict result);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: The gmtime_r() function is moved from the Thread-Safe Functions option to the
Base.

grantpt

Purpose: Grant access to the slave pseudo-terminal device.

Synopsis:XSI #include <stdlib.h>

int grantpt(int fildes);

Derivation: First released in Issue 4, Version 2.

Issue 7: No functional changes are made in this issue.

hcreate, hdestroy, hsearch

Purpose: Manage hash search table.

Synopsis:XSI #include <search.h>

int hcreate(size_t nel);
void hdestroy(void);
ENTRY *hsearch(ENTRY item, ACTION action);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

The Authorized Guide to the Single UNIX Specification, Version 4 65

System Interfaces System Interfaces Migration

htonl, htons, ntohl, ntohs

Purpose: Convert values between host and network byte order.

Synopsis: #include <arpa/inet.h>

uint32_t htonl(uint32_t hostlong);
uint16_t htons(uint16_t hostshort);
uint32_t ntohl(uint32_t netlong);
uint16_t ntohs(uint16_t netshort);

Derivation: First released in Issue 6. Derived from the Commands and Utilities, Issue 5
(XCU5).

Issue 7: No functional changes are made in this issue.

hypot, hypotf, hypotl

Purpose: Euclidean distance function.

Synopsis: #include <math.h>

double hypot(double x, double y);
float hypotf(float x, float y);
long double hypotl(long double x, long double y);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

iconv

Purpose: Codeset conversion function.

Synopsis: #include <iconv.h>

size_t iconv(iconv_t cd, char **restrict inbuf,
size_t *restrict inbytesleft, char **restrict outbuf,
size_t *restrict outbytesleft);

Derivation: First released in Issue 4. Derived from the HP-UX Manual.

Issue 7: The iconv() function is moved from the XSI option to the Base.

iconv_close

Purpose: Codeset conversion deallocation function.

Synopsis: #include <iconv.h>

int iconv_close(iconv_t cd);

Derivation: First released in Issue 4. Derived from the HP-UX Manual.

Issue 7: The iconv_close() function is moved from the XSI option to the Base.

66 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

iconv_open

Purpose: Codeset conversion allocation function.

Synopsis: #include <iconv.h>

iconv_t iconv_open(const char *tocode, const char *fromcode);

Derivation: First released in Issue 4. Derived from the HP-UX Manual.

Issue 7: SD5-XBD-ERN-4 is applied, changing the definition of the [EMFILE] error.

The iconv_open() function is moved from the XSI option to the Base.

if_freenameindex

Purpose: Free memory allocated by if_nameindex.

Synopsis: #include <net/if.h>

void if_freenameindex(struct if_nameindex *ptr);

Derivation: First released in Issue 6. Derived from the Commands and Utilities, Issue 5
(XCU5).

Issue 7: No functional changes are made in this issue.

if_indextoname

Purpose: Map a network interface index to its corresponding name.

Synopsis: #include <net/if.h>

char *if_indextoname(unsigned ifindex, char *ifname);

Derivation: First released in Issue 6. Derived from the Commands and Utilities, Issue 5
(XCU5).

Issue 7: No functional changes are made in this issue.

if_nameindex

Purpose: Return all network interface names and indexes.

Synopsis: #include <net/if.h>

struct if_nameindex *if_nameindex(void);

Derivation: First released in Issue 6. Derived from the Commands and Utilities, Issue 5
(XCU5).

Issue 7: No functional changes are made in this issue.

if_nametoindex

Purpose: Map a network interface name to its corresponding index.

Synopsis: #include <net/if.h>

unsigned if_nametoindex(const char *ifname);

Derivation: First released in Issue 6. Derived from the Commands and Utilities, Issue 5
(XCU5).

The Authorized Guide to the Single UNIX Specification, Version 4 67

System Interfaces System Interfaces Migration

Issue 7: No functional changes are made in this issue.

ilogb, ilogbf, ilogbl

Purpose: Return an unbiased exponent.

Synopsis: #include <math.h>

int ilogb(double x);
int ilogbf(float x);
int ilogbl(long double x);

Derivation: First released in Issue 4, Version 2.

Issue 7: ISO/IEC 9899: 1999 standard, Technical Corrigendum 2 #48 (SD5-XSH-ERN-71),
#49, and #79 (SD5-XSH-ERN-72) are applied.

imaxabs

Purpose: Return absolute value.

Synopsis: #include <inttypes.h>

intmax_t imaxabs(intmax_t j);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

imaxdiv

Purpose: Return quotient and remainder.

Synopsis: #include <inttypes.h>

imaxdiv_t imaxdiv(intmax_t numer, intmax_t denom);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

inet_addr, inet_ntoa

Purpose: IPv4 address manipulation.

Synopsis: #include <arpa/inet.h>

in_addr_t inet_addr(const char *cp);
char *inet_ntoa(struct in_addr in);

Derivation: First released in Issue 6. Derived from the Commands and Utilities, Issue 5
(XCU5).

Issue 7: No functional changes are made in this issue.

68 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

inet_ntop, inet_pton

Purpose: Convert IPv4 and IPv6 addresses between binary and text form.

Synopsis: #include <arpa/inet.h>

const char *inet_ntop(int af, const void *restrict src,
char *restrict dst, socklen_t size);

int inet_pton(int af, const char *restrict src,
void *restrict dst);

Derivation: First released in Issue 6. Derived from the Commands and Utilities, Issue 5
(XCU5).

Issue 7: No functional changes are made in this issue.

initstate, random, setstate, srandom

Purpose: Pseudo-random number functions.

Synopsis:XSI #include <stdlib.h>

char *initstate(unsigned seed, char *state, size_t size);
long random(void);
char *setstate(char *state);
void srandom(unsigned seed);

Derivation: First released in Issue 4, Version 2.

Issue 7: The type of the first argument to setstate() is changed from const char * to char *.

insque, remque

Purpose: Insert or remove an element in a queue.

Synopsis:XSI #include <search.h>

void insque(void *element, void *pred);
void remque(void *element);

Derivation: First released in Issue 4, Version 2.

Issue 7: No functional changes are made in this issue.

ioctl

Purpose: Control a STREAMS device (STREAMS).

Synopsis:OB XSR #include <stropts.h>

int ioctl(int fildes, int request, ... /* arg */);

Derivation: First released in Issue 4, Version 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #155 is applied, adding a ‘‘may fail’’
[EINVAL] error condition for the I_SENDFD command.

SD5-XSH-ERN-100 is applied, correcting the definition of the [ENOTTY] error
condition.

The ioctl() function is marked obsolescent.

The Authorized Guide to the Single UNIX Specification, Version 4 69

System Interfaces System Interfaces Migration

isalnum, isalnum_l

Purpose: Test for an alphanumeric character.

Synopsis: #include <ctype.h>

int isalnum(int c);
CX int isalnum_l(int c, locale_t locale);

The isalnum_l() function tests whether c is a character of class alpha or digit in the
locale represented by locale. A handle for use as locale can be obtained using
newlocale() or duplocale().

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: The isalnum_l() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 4.

isalpha, isalpha_l

Purpose: Test for an alphabetic character.

Synopsis: #include <ctype.h>

int isalpha(int c);
CX int isalpha_l(int c, locale_t locale);

The isalpha_l() function tests whether c is a character of class alpha in the locale
represented by locale. A handle for use as locale can be obtained using newlocale()
or duplocale().

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: The isalpha_l() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 4.

isascii

Purpose: Test for a 7-bit US-ASCII character.

Synopsis:OB XSI #include <ctype.h>

int isascii(int c);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: The isascii() function is marked obsolescent.

isastream

Purpose: Test a file descriptor (STREAMS).

Synopsis:OB XSR #include <stropts.h>

int isastream(int fildes);

Derivation: First released in Issue 4, Version 2.

70 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

Issue 7: The isastream() function is marked obsolescent.

isatty

Purpose: Test for a terminal device.

Synopsis: #include <unistd.h>

int isatty(int fildes);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: SD5-XSH-ERN-100 is applied, correcting the definition of the [ENOTTY] error
condition.

isblank, isblank_l

Purpose: Test for a blank character.

Synopsis: #include <ctype.h>

int isblank(int c);
CX int isblank_l(int c, locale_t locale);

The isblank_l() function tests whether c is a character of class blank in the locale
represented by locale. A handle for use as locale can be obtained using newlocale()
or duplocale().

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: The isblank_l() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 4.

iscntrl, iscntrl_l

Purpose: Test for a control character.

Synopsis: #include <ctype.h>

int iscntrl(int c);
CX int iscntrl_l(int c, locale_t locale);

The iscntrl_l() function tests whether c is a character of class cntrl in the locale
represented by locale. A handle for use as locale can be obtained using newlocale()
or duplocale().

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: The iscntrl_l() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 4.

The Authorized Guide to the Single UNIX Specification, Version 4 71

System Interfaces System Interfaces Migration

isdigit, isdigit_l

Purpose: Test for a decimal digit.

Synopsis: #include <ctype.h>

int isdigit(int c);
CX int isdigit_l(int c, locale_t locale);

The isdigit_l() function tests whether c is a character of class digit in the locale
represented by locale. A handle for use as locale can be obtained using newlocale()
or duplocale().

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: The isdigit_l() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 4.

isfinite

Purpose: Test for finite value.

Synopsis: #include <math.h>

int isfinite(real-floating x);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

isgraph, isgraph_l

Purpose: Test for a visible character.

Synopsis: #include <ctype.h>

int isgraph(int c);
CX int isgraph_l(int c, locale_t locale);

The isgraph_l() function tests whether c is a character of class graph in the locale
represented by locale. A handle for use as locale can be obtained using newlocale()
or duplocale().

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: The isgraph_l() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 4.

isgreater

Purpose: Test if x greater than y.

Synopsis: #include <math.h>

int isgreater(real-floating x, real-floating y);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

72 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

isgreaterequal

Purpose: Test if x is greater than or equal to y.

Synopsis: #include <math.h>

int isgreaterequal(real-floating x, real-floating y);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

isinf

Purpose: Test for infinity.

Synopsis: #include <math.h>

int isinf(real-floating x);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

isless

Purpose: Test if x is less than y.

Synopsis: #include <math.h>

int isless(real-floating x, real-floating y);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

islessequal

Purpose: Test if x is less than or equal to y.

Synopsis: #include <math.h>

int islessequal(real-floating x, real-floating y);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

islessgreater

Purpose: Test if x is less than or greater than y.

Synopsis: #include <math.h>

int islessgreater(real-floating x, real-floating y);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

The Authorized Guide to the Single UNIX Specification, Version 4 73

System Interfaces System Interfaces Migration

islower, islower_l

Purpose: Test for a lowercase letter.

Synopsis: #include <ctype.h>

int islower(int c);
CX int islower_l(int c, locale_t locale);

The islower_l() function tests whether c is a character of class lower in the locale
represented by locale. A handle for use as locale can be obtained using newlocale()
or duplocale().

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: The islower_l() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 4.

isnan

Purpose: Test for a NaN.

Synopsis: #include <math.h>

int isnan(real-floating x);

Derivation: First released in Issue 3.

Issue 7: No functional changes are made in this issue.

isnormal

Purpose: Test for a normal value.

Synopsis: #include <math.h>

int isnormal(real-floating x);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

isprint, isprint_l

Purpose: Test for a printable character.

Synopsis: #include <ctype.h>

int isprint(int c);
CX int isprint_l(int c, locale_t locale);

The isprint_l() function tests whether c is a character of class print in the locale
represented by locale. A handle for use as locale can be obtained using newlocale()
or duplocale().

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: The isprint_l() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 4.

74 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

ispunct, ispunct_l

Purpose: Test for a punctuation character.

Synopsis: #include <ctype.h>

int ispunct(int c);
CX int ispunct_l(int c, locale_t locale);

The ispunct_l() function tests whether c is a character of class punct in the locale
represented by locale. A handle for use as locale can be obtained using newlocale()
or duplocale().

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: The ispunct_l() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 4.

isspace, isspace_l

Purpose: Test for a white-space character.

Synopsis: #include <ctype.h>

int isspace(int c);
CX int isspace_l(int c, locale_t locale);

The isspace_l() function tests whether c is a character of class space in the locale
represented by locale. A handle for use as locale can be obtained using newlocale()
or duplocale().

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: The isspace_l() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 4.

isunordered

Purpose: Test if arguments are unordered.

Synopsis: #include <math.h>

int isunordered(real-floating x, real-floating y);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

isupper, isupper_l

Purpose: Test for an uppercase letter.

Synopsis: #include <ctype.h>

int isupper(int c);
CX int isupper_l(int c, locale_t locale);

The isupper_l() function tests whether c is a character of class upper in the locale
represented by locale. A handle for use as locale can be obtained using newlocale()
or duplocale().

The Authorized Guide to the Single UNIX Specification, Version 4 75

System Interfaces System Interfaces Migration

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: The isupper_l() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 4.

iswalnum, iswalnum_l

Purpose: Test for an alphanumeric wide-character code.

Synopsis: #include <wctype.h>

int iswalnum(wint_t wc);
CX int iswalnum_l(wint_t wc, locale_t locale);

The iswalnum_l() function tests whether wc is a wide-character code representing a
character of class alpha or digit in the locale represented by locale. A handle for
use as locale can be obtained using newlocale() or duplocale().

Derivation: First released as a World-wide Portability Interface in Issue 4.

Issue 7: The iswalnum_l() function is added from The Open Group Technical Standard,
2006, Extended API Set Part 4.

iswalpha, iswalpha_l

Purpose: Test for an alphabetic wide-character code.

Synopsis: #include <wctype.h>

int iswalpha(wint_t wc);
CX int iswalpha_l(wint_t wc, locale_t locale);

The iswalpha_l() function tests whether wc is a wide-character code representing a
character of class alpha in the locale represented by locale. A handle for use as
locale can be obtained using newlocale() or duplocale().

Derivation: First released in Issue 4.

Issue 7: The iswalpha_l() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 4.

iswblank, iswblank_l

Purpose: Test for a blank wide-character code.

Synopsis: #include <wctype.h>

int iswblank(wint_t wc);
CX int iswblank_l(wint_t wc, locale_t locale);

The iswblank_l() function tests whether wc is a wide-character code representing a
character of class blank in the locale represented by locale. A handle for use as
locale can be obtained using newlocale() or duplocale().

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: The iswblank_l() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 4.

76 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

iswcntrl, iswcntrl_l

Purpose: Test for a control wide-character code.

Synopsis: #include <wctype.h>

int iswcntrl(wint_t wc);
CX int iswcntrl_l(wint_t wc, locale_t locale);

The iswcntrl_l() function tests whether wc is a wide-character code representing a
character of class cntrl in the locale represented by locale. A handle for use as locale
can be obtained using newlocale() or duplocale().

Derivation: First released in Issue 4.

Issue 7: The iswcntrl_l() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 4.

iswctype, iswctype_l

Purpose: Test character for a specified class.

Synopsis: #include <wctype.h>

int iswctype(wint_t wc, wctype_t charclass);
CX int iswctype_l(wint_t wc, wctype_t charclass,

locale_t locale);

The iswctype_l() function determines whether the wide-character code wc has the
character class charclass in the locale represented by locale. A handle for use as
locale can be obtained using newlocale() or duplocale().

Derivation: First released as World-wide Portability Interfaces in Issue 4.

Issue 7: The iswctype_l() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 4.

iswdigit, iswdigit_l

Purpose: Test for a decimal digit wide-character code.

Synopsis: #include <wctype.h>

int iswdigit(wint_t wc);
CX int iswdigit_l(wint_t wc, locale_t locale);

The iswdigit_l() function tests whether wc is a wide-character code representing a
character of class digit in the locale represented by locale. A handle for use as locale
can be obtained using newlocale() or duplocale().

Derivation: First released in Issue 4.

Issue 7: The iswdigit_l() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 4.

The Authorized Guide to the Single UNIX Specification, Version 4 77

System Interfaces System Interfaces Migration

iswgraph, iswgraph_l

Purpose: Test for a visible wide-character code.

Synopsis: #include <wctype.h>

int iswgraph(wint_t wc);
CX int iswgraph_l(wint_t wc, locale_t locale);

The iswgraph_l() function tests whether wc is a wide-character code representing a
character of class graph in the locale represented by locale. A handle for use as
locale can be obtained using newlocale() or duplocale().

Derivation: First released in Issue 4.

Issue 7: The iswgraph_l() function is added from The Open Group Technical Standard,
2006, Extended API Set Part 4.

iswlower, iswlower_l

Purpose: Test for a lowercase letter wide-character code.

Synopsis: #include <wctype.h>

int iswlower(wint_t wc);
CX int iswlower_l(wint_t wc, locale_t locale);

The iswlower_l() function tests whether wc is a wide-character code representing a
character of class lower in the locale represented by locale. A handle for use as
locale can be obtained using newlocale() or duplocale().

Derivation: First released in Issue 4.

Issue 7: The iswlower_l() function is added from The Open Group Technical Standard,
2006, Extended API Set Part 4.

iswprint, iswprint_l

Purpose: Test for a printable wide-character code.

Synopsis: #include <wctype.h>

int iswprint(wint_t wc);
CX int iswprint_l(wint_t wc, locale_t locale);

The iswprint_l() function tests whether wc is a wide-character code representing a
character of class print in the locale represented by locale. A handle for use as locale
can be obtained using newlocale() or duplocale().

Derivation: First released in Issue 4.

Issue 7: The iswprint_l() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 4.

78 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

iswpunct, iswpunct_l

Purpose: Test for a punctuation wide-character code.

Synopsis: #include <wctype.h>

int iswpunct(wint_t wc);
CX int iswpunct_l(wint_t wc, locale_t locale);

The iswpunct_l() function tests whether wc is a wide-character code representing a
character of class punct in the locale represented by locale. A handle for use as
locale can be obtained using newlocale() or duplocale().

Derivation: First released in Issue 4.

Issue 7: The iswpunct_l() function is added from The Open Group Technical Standard,
2006, Extended API Set Part 4.

iswspace, iswspace_l

Purpose: Test for a white-space wide-character code.

Synopsis: #include <wctype.h>

int iswspace(wint_t wc);
CX int iswspace_l(wint_t wc, locale_t locale);

The iswspace_l() function tests whether wc is a wide-character code representing a
character of class space in the locale represented by locale. A handle for use as
locale can be obtained using newlocale() or duplocale().

Derivation: First released in Issue 4.

Issue 7: The iswspace_l() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 4.

iswupper, iswupper_l

Purpose: Test for an uppercase letter wide-character code.

Synopsis: #include <wctype.h>

int iswupper(wint_t wc);
CX int iswupper_l(wint_t wc, locale_t locale);

The iswupper_l() function tests whether wc is a wide-character code representing a
character of class upper in the locale represented by locale. A handle for use as
locale can be obtained using newlocale() or duplocale().

Derivation: First released in Issue 4.

Issue 7: The iswupper_l() function is added from The Open Group Technical Standard,
2006, Extended API Set Part 4.

The Authorized Guide to the Single UNIX Specification, Version 4 79

System Interfaces System Interfaces Migration

iswxdigit, iswxdigit_l

Purpose: Test for a hexadecimal digit wide-character code.

Synopsis: #include <wctype.h>

int iswxdigit(wint_t wc);
CX int iswxdigit_l(wint_t wc, locale_t locale);

The iswxdigit_l() function tests whether wc is a wide-character code representing a
character of class xdigit in the locale represented by locale. A handle for use as
locale can be obtained using newlocale() or duplocale().

Derivation: First released in Issue 4.

Issue 7: The iswxdigit_l() function is added from The Open Group Technical Standard,
2006, Extended API Set Part 4.

isxdigit, isxdigit_l

Purpose: Test for a hexadecimal digit.

Synopsis: #include <ctype.h>

int isxdigit(int c);
CX int isxdigit_l(int c, locale_t locale);

The isxdigit_l() function tests whether c is a character of class xdigit in the locale
represented by locale. A handle for use as locale can be obtained using newlocale()
or duplocale().

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: The isxdigit_l() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 4.

j0, j1, jn

Purpose: Bessel functions of the first kind.

Synopsis:XSI #include <math.h>

double j0(double x);
double j1(double x);
double jn(int n, double x);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

80 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

kill

Purpose: Send a signal to a process or a group of processes.

Synopsis:CX #include <signal.h>

int kill(pid_t pid, int sig);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

killpg

Purpose: Send a signal to a process group.

Synopsis:XSI #include <signal.h>

int killpg(pid_t pgrp, int sig);

Derivation: First released in Issue 4, Version 2.

Issue 7: No functional changes are made in this issue.

labs, llabs

Purpose: Return a long integer absolute value.

Synopsis: #include <stdlib.h>

long labs(long i);
long long llabs(long long i);

Derivation: First released in Issue 4. Derived from the IEEE Std 1003.1i-1995.

Issue 7: No functional changes are made in this issue.

lchown

Purpose: Change the owner and group of a symbolic link.

Synopsis: #include <unistd.h>

int lchown(const char *path, uid_t owner, gid_t group);

Derivation: First released in Issue 4, Version 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #143 is applied, allowing
implementations to support pathnames longer than {PATH_MAX}.

The lchown() function is moved from the XSI option to the Base.

The [EOPNOTSUPP] error is removed.

The [ENOTDIR] error condition is clarified to cover the condition where the last
component of a pathname exists but is not a directory or a symbolic link to a
directory.

The Authorized Guide to the Single UNIX Specification, Version 4 81

System Interfaces System Interfaces Migration

ldexp, ldexpf, ldexpl

Purpose: Load exponent of a floating-point number.

Synopsis: #include <math.h>

double ldexp(double x, int exp);
float ldexpf(float x, int exp);
long double ldexpl(long double x, int exp);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

ldiv, lldiv

Purpose: Compute quotient and remainder of a long division.

Synopsis: #include <stdlib.h>

ldiv_t ldiv(long numer, long denom);
lldiv_t lldiv(long long numer, long long denom);

Derivation: First released in Issue 4. Derived from the IEEE Std 1003.1i-1995.

Issue 7: No functional changes are made in this issue.

lgamma, lgammaf, lgammal, signgam

Purpose: Log gamma function.

Synopsis: #include <math.h>

double lgamma(double x);
float lgammaf(float x);
long double lgammal(long double x);

XSI extern int signgam;

Derivation: First released in Issue 3.

Issue 7: The DESCRIPTION is clarified regarding the value of signgam when x is Nan, −Inf,
or a negative integer.

link, linkat

Purpose: Link one file to another file relative to two directory file descriptors.

Synopsis: #include <unistd.h>

int link(const char *path1, const char *path2);
int linkat(int fd1, const char *path1, int fd2,

const char *path2, int flag);

The linkat() function is equivalent to the link() function except in the case where
either path1 or path2 or both are relative paths. In this case a relative path path1 is
interpreted relative to the directory associated with the file descriptor fd1 instead
of the current working directory and similarly for path2 and the file descriptor fd2.
If the file descriptor was opened without O_SEARCH, the function checks whether
directory searches are permitted using the current permissions of the directory
underlying the file descriptor. If the file descriptor was opened with O_SEARCH,
the function does not perform the check.

82 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

The AT_SYMLINK_FOLLOW flag can be used to specify that if path1 names a
symbolic link, a new link for the target of the symbolic link is created. By default a
new link for the symbolic link itself is created.

The purpose of the linkat() function is to link files in directories other than the
current working directory without exposure to race conditions. Any part of the
path of a file could be changed in parallel to a call to link(), resulting in unspecified
behavior. By opening a file descriptor for the directory of both the existing file and
the target location and using the linkat() function it can be guaranteed that the
both filenames are in the desired directories.

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: If path1 names a symbolic link, the link() function is no longer required to follow
the link: it is implementation-defined whether link() follows the link, or creates a
new link to the symbolic link itself. Applications which need control over whether
the link is followed can use the new linkat() function, setting the flag argument
appropriately.

Austin Group Interpretation 1003.1-2001 #143 is applied, allowing
implementations to support pathnames longer than {PATH_MAX}.

The linkat() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 2.

Functionality relating to XSI STREAMS is marked obsolescent.

Changes are made related to support for finegrained timestamps.

lio_listio

Purpose: List directed I/O.

Synopsis: #include <aio.h>

int lio_listio(int mode,
struct aiocb *restrict const list[restrict],
int nent, struct sigevent *restrict sig);

Derivation: First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

Issue 7: The lio_listio() function is moved from the Asynchronous Input and Output option
to the Base.

listen

Purpose: Listen for socket connections and limit the queue of incoming connections.

Synopsis: #include <sys/socket.h>

int listen(int socket, int backlog);

Derivation: First released in Issue 6. Derived from the Commands and Utilities, Issue 5
(XCU5).

Issue 7: No functional changes are made in this issue.

The Authorized Guide to the Single UNIX Specification, Version 4 83

System Interfaces System Interfaces Migration

llrint, llrintf, llrintl

Purpose: Round to the nearest integer value using current rounding direction.

Synopsis: #include <math.h>

long long llrint(double x);
long long llrintf(float x);
long long llrintl(long double x);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: ISO/IEC 9899: 1999 standard, Technical Corrigendum 2 #53 is applied.

llround, llroundf, llroundl

Purpose: Round to nearest integer value.

Synopsis: #include <math.h>

long long llround(double x);
long long llroundf(float x);
long long llroundl(long double x);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: ISO/IEC 9899: 1999 standard, Technical Corrigendum 2 #54 (SD5-XSH-ERN-75) is
applied.

localeconv

Purpose: Return locale-specific information.

Synopsis: #include <locale.h>

struct lconv *localeconv(void);

Derivation: First released in Issue 4. Derived from the IEEE Std 1003.1b-1993.

Issue 7: The definitions of int_curr_symbol and currency_symbol are updated.

The examples in the APPLICATION USAGE section are updated.

localtime, localtime_r

Purpose: Convert a time value to a broken-down local time.

Synopsis: #include <time.h>

struct tm *localtime(const time_t *timer);
CX struct tm *localtime_r(const time_t *restrict timer,

struct tm *restrict result);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: The localtime_r() function is moved from the Thread-Safe Functions option to the
Base.

Changes are made to the EXAMPLES section related to support for finegrained
timestamps.

84 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

lockf

Purpose: Record locking on files.

Synopsis:XSI #include <unistd.h>

int lockf(int fildes, int function, off_t size);

Derivation: First released in Issue 4, Version 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #054 is applied, updating the
DESCRIPTION to change ‘‘other threads’’ to ‘‘threads in other processes’’.

log, logf, logl

Purpose: Natural logarithm function.

Synopsis: #include <math.h>

double log(double x);
float logf(float x);
long double logl(long double x);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

log10, log10f, log10l

Purpose: Base 10 logarithm function.

Synopsis: #include <math.h>

double log10(double x);
float log10f(float x);
long double log10l(long double x);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

log1p, log1pf, log1pl

Purpose: Compute a natural logarithm.

Synopsis: #include <math.h>

double log1p(double x);
float log1pf(float x);
long double log1pl(long double x);

Derivation: First released in Issue 4, Version 2.

Issue 7: No functional changes are made in this issue.

The Authorized Guide to the Single UNIX Specification, Version 4 85

System Interfaces System Interfaces Migration

log2, log2f, log2l

Purpose: Compute base 2 logarithm functions.

Synopsis: #include <math.h>

double log2(double x);
float log2f(float x);
long double log2l(long double x);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

logb, logbf, logbl

Purpose: Radix-independent exponent.

Synopsis: #include <math.h>

double logb(double x);
float logbf(float x);
long double logbl(long double x);

Derivation: First released in Issue 4, Version 2.

Issue 7: ISO/IEC 9899: 1999 standard, Technical Corrigendum 2 #50 (SD5-XSH-ERN-76) is
applied.

longjmp

Purpose: Non-local goto.

Synopsis: #include <setjmp.h>

void longjmp(jmp_buf env, int val);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

lrint, lrintf, lrintl

Purpose: Round to nearest integer value using current rounding direction.

Synopsis: #include <math.h>

long lrint(double x);
long lrintf(float x);
long lrintl(long double x);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: ISO/IEC 9899: 1999 standard, Technical Corrigendum 2 #53 (SD5-XSH-ERN-77) is
applied.

86 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

lround, lroundf, lroundl

Purpose: Round to nearest integer value.

Synopsis: #include <math.h>

long lround(double x);
long lroundf(float x);
long lroundl(long double x);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: ISO/IEC 9899: 1999 standard, Technical Corrigendum 2 #54 (SD5-XSH-ERN-78) is
applied.

lsearch, lfind

Purpose: Linear search and update.

Synopsis:XSI #include <search.h>

void *lsearch(const void *key, void *base, size_t *nelp,
size_t width, int (*compar)(const void *, const void *));

void *lfind(const void *key, const void *base, size_t *nelp,
size_t width, int (*compar)(const void *, const void *));

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

lseek

Purpose: Move the read/write file offset.

Synopsis: #include <unistd.h>

off_t lseek(int fildes, off_t offset, int whence);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

malloc

Purpose: A memory allocator.

Synopsis: #include <stdlib.h>

void *malloc(size_t size);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

The Authorized Guide to the Single UNIX Specification, Version 4 87

System Interfaces System Interfaces Migration

mblen

Purpose: Get number of bytes in a character.

Synopsis: #include <stdlib.h>

int mblen(const char *s, size_t n);

Derivation: First released in Issue 4. Aligned with the IEEE Std 1003.1i-1995.

Issue 7: No functional changes are made in this issue.

mbrlen

Purpose: Get number of bytes in a character (restartable).

Synopsis: #include <wchar.h>

size_t mbrlen(const char *restrict s, size_t n,
mbstate_t *restrict ps);

Derivation: First released in Issue 5. Included for alignment with .

Issue 7: Austin Group Interpretation 1003.1-2001 #170 is applied, changing the [EILSEQ]
error condition from a ‘‘may fail’’ to a ‘‘shall fail’’.

mbrtowc

Purpose: Convert a character to a wide-character code (restartable).

Synopsis: #include <wchar.h>

size_t mbrtowc(wchar_t *restrict pwc, const char *restrict s,
size_t n, mbstate_t *restrict ps);

Derivation: First released in Issue 5. Included for alignment with .

Issue 7: Austin Group Interpretation 1003.1-2001 #170 is applied, changing the [EILSEQ]
error condition from a ‘‘may fail’’ to a ‘‘shall fail’’.

mbsinit

Purpose: Determine conversion object status.

Synopsis: #include <wchar.h>

int mbsinit(const mbstate_t *ps);

Derivation: First released in Issue 5. Included for alignment with .

Issue 7: No functional changes are made in this issue.

mbsnrtowcs, mbsrtowcs

Purpose: Convert a character string to a wide-character string (restartable).

Synopsis: #include <wchar.h>

CX size_t mbsnrtowcs(wchar_t *restrict dst,
const char **restrict src, size_t nmc,
size_t len, mbstate_t *restrict ps);

size_t mbsrtowcs(wchar_t *restrict dst,
const char **restrict src, size_t len,
mbstate_t *restrict ps);

88 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

The mbsnrtowcs() function is equivalent to the mbsrtowcs() function, except that the
conversion of characters pointed to by src is limited to at most nmc bytes (the size
of the input buffer).

Derivation: First released in Issue 5. Included for alignment with .

Issue 7: Austin Group Interpretation 1003.1-2001 #170 is applied, changing the [EILSEQ]
error condition from a ‘‘may fail’’ to a ‘‘shall fail’’.

The mbsnrtowcs() function is added from The Open Group Technical Standard,
2006, Extended API Set Part 1.

mbstowcs

Purpose: Convert a character string to a wide-character string.

Synopsis: #include <stdlib.h>

size_t mbstowcs(wchar_t *restrict pwcs, const char *restrict s,
size_t n);

Derivation: First released in Issue 4. Aligned with the IEEE Std 1003.1i-1995.

Issue 7: Austin Group Interpretation 1003.1-2001 #170 is applied, changing the [EILSEQ]
error condition from a ‘‘may fail’’ to a ‘‘shall fail’’.

mbtowc

Purpose: Convert a character to a wide-character code.

Synopsis: #include <stdlib.h>

int mbtowc(wchar_t *restrict pwc, const char *restrict s,
size_t n);

Derivation: First released in Issue 4. Aligned with the IEEE Std 1003.1i-1995.

Issue 7: Austin Group Interpretation 1003.1-2001 #170 is applied, changing the [EILSEQ]
error condition from a ‘‘may fail’’ to a ‘‘shall fail’’.

memccpy

Purpose: Copy bytes in memory.

Synopsis:XSI #include <string.h>

void *memccpy(void *restrict s1, const void *restrict s2,
int c, size_t n);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

The Authorized Guide to the Single UNIX Specification, Version 4 89

System Interfaces System Interfaces Migration

memchr

Purpose: Find byte in memory.

Synopsis: #include <string.h>

void *memchr(const void *s, int c, size_t n);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

memcmp

Purpose: Compare bytes in memory.

Synopsis: #include <string.h>

int memcmp(const void *s1, const void *s2, size_t n);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

memcpy

Purpose: Copy bytes in memory.

Synopsis: #include <string.h>

void *memcpy(void *restrict s1, const void *restrict s2,
size_t n);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

memmove

Purpose: Copy bytes in memory with overlapping areas.

Synopsis: #include <string.h>

void *memmove(void *s1, const void *s2, size_t n);

Derivation: First released in Issue 4. Derived from the IEEE Std 1003.1b-1993.

Issue 7: No functional changes are made in this issue.

memset

Purpose: Set bytes in memory.

Synopsis: #include <string.h>

void *memset(void *s, int c, size_t n);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

90 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

mkdir, mkdirat

Purpose: Make a directory relative to directory file descriptor.

Synopsis: #include <sys/stat.h>

int mkdir(const char *path, mode_t mode);
int mkdirat(int fd, const char *path, mode_t mode);

The mkdirat() function is equivalent to the mkdir() function except in the case
where path specifies a relative path. In this case the newly created directory is
created relative to the directory associated with the file descriptor fd instead of the
current working directory. If the file descriptor was opened without O_SEARCH,
the function checks whether directory searches are permitted using the current
permissions of the directory underlying the file descriptor. If the file descriptor was
opened with O_SEARCH, the function does not perform the check.

The purpose of the mkdirat() function is to create a directory in directories other
than the current working directory without exposure to race conditions. Any part
of the path of a file could be changed in parallel to the call to mkdir(), resulting in
unspecified behavior. By opening a file descriptor for the target directory and
using the mkdirat() function it can be guaranteed that the newly created directory
is located relative to the desired directory.

Derivation: First released in Issue 3. Included for alignment with the IEEE Std 1003.1-1988
(POSIX.1).

Issue 7: Austin Group Interpretation 1003.1-2001 #143 is applied, allowing
implementations to support pathnames longer than {PATH_MAX}.

The mkdirat() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 2.

Changes are made related to support for finegrained timestamps.

mkdtemp, mkstemp

Purpose: Create a unique directory or file.

Synopsis:CX #include <stdlib.h>

char *mkdtemp(char *template);
int mkstemp(char *template);

The mkdtemp() function uses the contents of template to construct a unique
directory name. The string provided in template is a filename ending with six
trailing ’X’s. The mkdtemp() function replaces each ’X’ with a character from the
portable filename character set. The characters are chosen such that the resulting
name does not duplicate the name of an existing file at the time of a call to
mkdtemp(). The unique directory name is used to attempt to create the directory
using mode 0700 as modified by the file creation mask.

Derivation: First released in Issue 4, Version 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #143 is applied, allowing
implementations to support pathnames longer than {PATH_MAX}.

SD5-XSH-ERN-168 is applied, clarifying file permissions upon creation.

The mkstemp() function is moved from the XSI option to the Base.

The Authorized Guide to the Single UNIX Specification, Version 4 91

System Interfaces System Interfaces Migration

The mkdtemp() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 1.

mkfifo, mkfifoat

Purpose: Make a FIFO special file relative to directory file descriptor.

Synopsis: #include <sys/stat.h>

int mkfifo(const char *path, mode_t mode);
int mkfifoat(int fd, const char *path, mode_t mode);

The mkfifoat() function is equivalent to the mkfifo() function except in the case
where path specifies a relative path. In this case the newly created FIFO is created
relative to the directory associated with the file descriptor fd instead of the current
working directory. If the file descriptor was opened without O_SEARCH, the
function checks whether directory searches are permitted using the current
permissions of the directory underlying the file descriptor. If the file descriptor was
opened with O_SEARCH, the function does not perform the check.

The purpose of the mkfifoat() function is to create a FIFO special file in directories
other than the current working directory without exposure to race conditions. Any
part of the path of a file could be changed in parallel to a call to mkfifo(), resulting
in unspecified behavior. By opening a file descriptor for the target directory and
using the mkfifoat() function it can be guaranteed that the newly created FIFO is
located relative to the desired directory.

Derivation: First released in Issue 3. Included for alignment with the IEEE Std 1003.1-1988
(POSIX.1).

Issue 7: Austin Group Interpretation 1003.1-2001 #143 is applied, allowing
implementations to support pathnames longer than {PATH_MAX}.

The mkfifoat() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 2.

Changes are made related to support for finegrained timestamps.

mknod, mknodat

Purpose: Make directory, special file, or regular file.

Synopsis:XSI #include <sys/stat.h>

int mknod(const char *path, mode_t mode, dev_t dev);
int mknodat(int fd, const char *path, mode_t mode, dev_t dev);

The mknodat() function is equivalent to the mknod() function except in the case
where path specifies a relative path. In this case the newly created directory, special
file, or regular file is located relative to the directory associated with the file
descriptor fd instead of the current working directory. If the file descriptor was
opened without O_SEARCH, the function checks whether directory searches are
permitted using the current permissions of the directory underlying the file
descriptor. If the file descriptor was opened with O_SEARCH, the function does
not perform the check.

The purpose of the mknodat() function is to create directories, special files, or
regular files in directories other than the current working directory without
exposure to race conditions. Any part of the path of a file could be changed in

92 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

parallel to a call to mknod(), resulting in unspecified behavior. By opening a file
descriptor for the target directory and using the mknodat() function it can be
guaranteed that the newly created directory, special file, or regular file is located
relative to the desired directory.

Derivation: First released in Issue 4, Version 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #143 is applied, allowing
implementations to support pathnames longer than {PATH_MAX}.

The mknodat() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 2.

Changes are made related to support for finegrained timestamps.

mktime

Purpose: Convert broken-down time into time since the Epoch.

Synopsis: #include <time.h>

time_t mktime(struct tm *timeptr);

Derivation: First released in Issue 3. Included for alignment with the IEEE Std 1003.1-1988
(POSIX.1) and the IEEE Std 1003.1b-1993.

Issue 7: No functional changes are made in this issue.

mlock, munlock

Purpose: Lock or unlock a range of process address space (REALTIME).

Synopsis:MLR #include <sys/mman.h>

int mlock(const void *addr, size_t len);
int munlock(const void *addr, size_t len);

Derivation: First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

Issue 7: No functional changes are made in this issue.

mlockall, munlockall

Purpose: Lock/unlock the address space of a process (REALTIME).

Synopsis:ML #include <sys/mman.h>

int mlockall(int flags);
int munlockall(void);

Derivation: First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

Issue 7: No functional changes are made in this issue.

The Authorized Guide to the Single UNIX Specification, Version 4 93

System Interfaces System Interfaces Migration

mmap

Purpose: Map pages of memory.

Synopsis: #include <sys/mman.h>

void *mmap(void *addr, size_t len, int prot, int flags,
int fildes, off_t off);

Derivation: First released in Issue 4, Version 2.

Issue 7: Austin Group Interpretations 1003.1-2001 #078 and #079 are applied, clarifying
page alignment requirements and adding a note about the state of synchronization
objects becoming undefined when a shared region is unmapped.

Functionality relating to the Memory Protection and Memory Mapped Files
options is moved to the Base.

Changes are made related to support for finegrained timestamps.

modf, modff, modfl

Purpose: Decompose a floating-point number.

Synopsis: #include <math.h>

double modf(double x, double *iptr);
float modff(float value, float *iptr);
long double modfl(long double value, long double *iptr);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

mprotect

Purpose: Set protection of memory mapping.

Synopsis: #include <sys/mman.h>

int mprotect(void *addr, size_t len, int prot);

Derivation: First released in Issue 4, Version 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #078 is applied, clarifying page alignment
requirements.

The mprotect() function is moved from the Memory Protection option to the Base.

mq_close

Purpose: Close a message queue (REALTIME).

Synopsis:MSG #include <mqueue.h>

int mq_close(mqd_t mqdes);

Derivation: First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

Issue 7: No functional changes are made in this issue.

94 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

mq_getattr

Purpose: Get message queue attributes (REALTIME).

Synopsis:MSG #include <mqueue.h>

int mq_getattr(mqd_t mqdes, struct mq_attr *mqstat);

Derivation: First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

Issue 7: No functional changes are made in this issue.

mq_notify

Purpose: Notify process that a message is available (REALTIME).

Synopsis:MSG #include <mqueue.h>

int mq_notify(mqd_t mqdes,
const struct sigevent *notification);

Derivation: First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

Issue 7: SD5-XSH-ERN-38 is applied, adding the mq_timedreceive() function to the
DESCRIPTION.

Austin Group Interpretation 1003.1-2001 #032 is applied, adding the [EINVAL]
error.

An example is added.

mq_open

Purpose: Open a message queue (REALTIME).

Synopsis:MSG #include <mqueue.h>

mqd_t mq_open(const char *name, int oflag, ...);

Derivation: First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

Issue 7: Austin Group Interpretation 1003.1-2001 #077 is applied, clarifying the name
argument and changing [ENAMETOOLONG] from a ‘‘shall fail’’ to a ‘‘may fail’’
error.

Austin Group Interpretation 1003.1-2001 #141 is applied, adding FUTURE
DIRECTIONS.

SD5-XSH-ERN-170 is applied, updating the DESCRIPTION to clarify the wording
for setting the user ID and group ID of the message queue.

The Authorized Guide to the Single UNIX Specification, Version 4 95

System Interfaces System Interfaces Migration

mq_receive, mq_timedreceive

Purpose: Receive a message from a message queue (REALTIME).

Synopsis:MSG #include <mqueue.h>

ssize_t mq_receive(mqd_t mqdes, char *msg_ptr, size_t msg_len,
unsigned *msg_prio);

#include <mqueue.h>
#include <time.h>

ssize_t mq_timedreceive(mqd_t mqdes, char *restrict msg_ptr,
size_t msg_len, unsigned *restrict msg_prio,
const struct timespec *restrict abstime);

Derivation: First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

Issue 7: The mq_timedreceive() function is moved from the Timeouts option to the Base.

Functionality relating to the Timers option is moved to the Base.

mq_send, mq_timedsend

Purpose: Send a message to a message queue (REALTIME).

Synopsis:MSG #include <mqueue.h>

int mq_send(mqd_t mqdes, const char *msg_ptr, size_t msg_len,
unsigned msg_prio);

#include <mqueue.h>
#include <time.h>

int mq_timedsend(mqd_t mqdes, const char *msg_ptr,
size_t msg_len, unsigned msg_prio,
const struct timespec *abstime);

Derivation: First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

Issue 7: The mq_timedsend() function is moved from the Timeouts option to the Base.

Functionality relating to the Timers option is moved to the Base.

mq_setattr

Purpose: Set message queue attributes (REALTIME).

Synopsis:MSG #include <mqueue.h>

int mq_setattr(mqd_t mqdes,
const struct mq_attr *restrict mqstat,
struct mq_attr *restrict omqstat);

Derivation: First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

96 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

Issue 7: No functional changes are made in this issue.

mq_unlink

Purpose: Remove a message queue (REALTIME).

Synopsis:MSG #include <mqueue.h>

int mq_unlink(const char *name);

Derivation: First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

Issue 7: Austin Group Interpretation 1003.1-2001 #077 is applied, changing
[ENAMETOOLONG] from a ‘‘shall fail’’ to a ‘‘may fail’’ error .

Austin Group Interpretation 1003.1-2001 #141 is applied, requiring that after a
successful call to mq_unlink(), reuse of the name shall subsequently cause
mq_open() to behave as if no message queue of that name exists (that is, mq_open()
will fail if O_CREAT is not set, or will create a new message queue if O_CREAT is
set). Previously, attempts to recreate the message queue were allowed to fail.

msgctl

Purpose: XSI message control operations.

Synopsis:XSI #include <sys/msg.h>

int msgctl(int msqid, int cmd, struct msqid_ds *buf);

Derivation: First released in Issue 2. Derived from Issue 2 of the SVID.

Issue 7: No functional changes are made in this issue.

msgget

Purpose: Get the XSI message queue identifier.

Synopsis:XSI #include <sys/msg.h>

int msgget(key_t key, int msgflg);

Derivation: First released in Issue 2. Derived from Issue 2 of the SVID.

Issue 7: No functional changes are made in this issue.

msgrcv

Purpose: XSI message receive operation.

Synopsis:XSI #include <sys/msg.h>

ssize_t msgrcv(int msqid, void *msgp, size_t msgsz,
long msgtyp, int msgflg);

Derivation: First released in Issue 2. Derived from Issue 2 of the SVID.

The Authorized Guide to the Single UNIX Specification, Version 4 97

System Interfaces System Interfaces Migration

Issue 7: No functional changes are made in this issue.

msgsnd

Purpose: XSI message send operation.

Synopsis:XSI #include <sys/msg.h>

int msgsnd(int msqid, const void *msgp, size_t msgsz,
int msgflg);

Derivation: First released in Issue 2. Derived from Issue 2 of the SVID.

Issue 7: No functional changes are made in this issue.

msync

Purpose: Synchronize memory with physical storage.

Synopsis:XSI|SIO #include <sys/mman.h>

int msync(void *addr, size_t len, int flags);

Derivation: First released in Issue 4, Version 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #078 is applied, clarifying page alignment
requirements.

The msync() function is marked as part of the Synchronized Input and Output
option or XSI option as the Memory Mapped Files is moved to the Base.

Changes are made related to support for finegrained timestamps.

munmap

Purpose: Unmap pages of memory.

Synopsis: #include <sys/mman.h>

int munmap(void *addr, size_t len);

Derivation: First released in Issue 4, Version 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #078 is applied, clarifying page alignment
requirements.

The munmap() function is moved from the Memory Mapped Files option to the
Base.

nan, nanf, nanl

Purpose: Return quiet NaN.

Synopsis: #include <math.h>

double nan(const char *tagp);
float nanf(const char *tagp);
long double nanl(const char *tagp);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

98 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

Issue 7: No functional changes are made in this issue.

nanosleep

Purpose: High resolution sleep.

Synopsis:CX #include <time.h>

int nanosleep(const struct timespec *rqtp,
struct timespec *rmtp);

Derivation: First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

Issue 7: SD5-XBD-ERN-33 is applied, clarifying that the rqtp and rmtp arguments may
point to the same object.

The nanosleep() function is moved from the Timers option to the Base.

nearbyint, nearbyintf, nearbyintl

Purpose: Floating-point rounding functions.

Synopsis: #include <math.h>

double nearbyint(double x);
float nearbyintf(float x);
long double nearbyintl(long double x);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

newlocale

Purpose: Create or modify a locale object.

Synopsis:CX #include <locale.h>

locale_t newlocale(int category_mask, const char *locale,
locale_t base);

The newlocale() function creates a new locale object or modifies an existing one.

Application writers should note that handles for locale objects created by the
newlocale() function should be released by a corresponding call to freelocale().
Also, the special locale object LC_GLOBAL_LOCALE must not be passed for the
base argument, even when returned by the uselocale() function.

The following example shows the construction of a locale where the LC_CTYPE
category data comes from a locale loc1, and the LC_TIME category data from a
locale tok2:

#include <locale.h>
...
locale_t loc, new_loc;

/* Get the "loc1" data. */

loc = newlocale (LC_CTYPE_MASK, "loc1", NULL);
if (loc == (locale_t) 0)

The Authorized Guide to the Single UNIX Specification, Version 4 99

System Interfaces System Interfaces Migration

abort ();

/* Get the "loc2" data. */

new_loc = newlocale (LC_TIME_MASK, "loc2", loc);
if (new_loc != (locale_t) 0)

/* We don t abort if this fails. In this case this
simply used to unchanged locale object. */

loc = new_loc;

...

Derivation: First released in Issue 7. Derived from The Open Group Technical Standard, 2006,
Extended API Set Part 4.

Issue 7: First released in Issue 7.

nextafter, nextafterf, nextafterl, nexttoward, nexttowardf, nexttowardl

Purpose: Next representable floating-point number.

Synopsis: #include <math.h>

double nextafter(double x, double y);
float nextafterf(float x, float y);
long double nextafterl(long double x, long double y);
double nexttoward(double x, long double y);
float nexttowardf(float x, long double y);
long double nexttowardl(long double x, long double y);

Derivation: First released in Issue 4, Version 2.

Issue 7: No functional changes are made in this issue.

nftw

Purpose: Walk a file tree.

Synopsis:XSI #include <ftw.h>

int nftw(const char *path, int (*fn)(const char *,
const struct stat *, int, struct FTW *), int fd_limit,
int flags);

Derivation: First released in Issue 4, Version 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #143 is applied, allowing
implementations to support pathnames longer than {PATH_MAX}.

SD5-XBD-ERN-4 is applied, changing the definition of the [EMFILE] error.

APPLICATION USAGE is added and the EXAMPLES section is replaced with a
new example.

100 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

nice

Purpose: Change the nice value of a process.

Synopsis:XSI #include <unistd.h>

int nice(int incr);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

nl_langinfo, nl_langinfo_l

Purpose: Language information.

Synopsis: #include <langinfo.h>

char *nl_langinfo(nl_item item);
char *nl_langinfo_l(nl_item item, locale_t locale);

Derivation: First released in Issue 2.

Issue 7: The nl_langinfo() function is moved from the XSI option to the Base.

The nl_langinfo_l() function is added from The Open Group Technical Standard,
2006, Extended API Set Part 4.

open, openat

Purpose: Open file relative to directory file descriptor.

Synopsis:OH #include <sys/stat.h>
#include <fcntl.h>

int open(const char *path, int oflag, ...);
int openat(int fd, const char *path, int oflag, ...);

The openat() function is equivalent to the open() function except in the case where
path specifies a relative path. In this case the file to be opened is determined
relative to the directory associated with the file descriptor fd instead of the current
working directory. If the file descriptor was opened without O_SEARCH, the
function checks whether directory searches are permitted using the current
permissions of the directory underlying the file descriptor. If the file descriptor was
opened with O_SEARCH, the function does not perform the check.

The purpose of the openat() function is to enable opening files in directories other
than the current working directory without exposure to race conditions. Any part
of the path of a file could be changed in parallel to a call to open(), resulting in
unspecified behavior. By opening a file descriptor for the target directory and
using the openat() function it can be guaranteed that the opened file is located
relative to the desired directory.

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: Austin Group Interpretation 1003.1-2001 #113 is applied, requiring the O_SYNC
flag to be supported for regular files, even if the Synchronized Input and Output
option is not supported.

Austin Group Interpretation 1003.1-2001 #143 is applied, allowing
implementations to support pathnames longer than {PATH_MAX}.

The Authorized Guide to the Single UNIX Specification, Version 4 101

System Interfaces System Interfaces Migration

Austin Group Interpretation 1003.1-2001 #144 is applied, adding the O_TTY_INIT
flag.

Austin Group Interpretation 1003.1-2001 #171 is applied, adding support to set the
FD_CLOEXEC flag atomically at open(), and adding the F_DUPFD_CLOEXEC
flag.

SD5-XBD-ERN-4 is applied, changing the definition of the [EMFILE] error.

This page is revised and the openat() function is added from The Open Group
Technical Standard, 2006, Extended API Set Part 2.

Functionality relating to the XSI STREAMS option is marked obsolescent.

Changes are made related to support for finegrained timestamps.

open_memstream, open_wmemstream

Purpose: Open a dynamic memory buffer stream.

Synopsis:CX #include <stdio.h>

FILE *open_memstream(char **bufp, size_t *sizep);

#include <wchar.h>

FILE *open_wmemstream(wchar_t **bufp, size_t *sizep);

The open_memstream() and open_wmemstream() functions create an I/O stream
associated with a dynamically allocated memory buffer.

These functions are similar to fmemopen(), except that the memory is always
allocated dynamically by the function, and the stream is opened only for output.

Application writers should note that the buffer created by these functions should
be freed by the application after closing the stream, by means of a call to free().

An example program using the open_memstream() interface follows:

#include <stdio.h>
#include <stdlib.h>

int
main (void)
{

FILE *stream;
char *buf;
size_t len;
off_t eob;

stream = open_memstream (&buf, &len);
if (stream == NULL)

/* handle error */ ;
fprintf (stream, "hello my world");
fflush (stream);
printf ("buf=%s, len=%zu\n", buf, len);
eob = ftello(stream);
fseeko (stream, 0, SEEK_SET);
fprintf (stream, "good-bye");
fseeko (stream, eob, SEEK_SET);

102 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

fclose (stream);
printf ("buf=%s, len=%zu\n", buf, len);
free (buf);
return 0;

}

This program produces the following output:

buf=hello my world, len=14
buf=good-bye world, len=14

Derivation: First released in Issue 7. Derived from The Open Group Technical Standard, 2006,
Extended API Set Part 1.

Issue 7: First released in Issue 7.

pause

Purpose: Suspend the thread until a signal is received.

Synopsis: #include <unistd.h>

int pause(void);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

pclose

Purpose: Close a pipe stream to or from a process.

Synopsis:CX #include <stdio.h>

int pclose(FILE *stream);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

perror

Purpose: Write error messages to standard error.

Synopsis: #include <stdio.h>

void perror(const char *s);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: Changes are made related to support for finegrained timestamps.

pipe

Purpose: Create an interprocess channel.

Synopsis: #include <unistd.h>

int pipe(int fildes[2]);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

The Authorized Guide to the Single UNIX Specification, Version 4 103

System Interfaces System Interfaces Migration

Issue 7: SD5-XSH-ERN-156 is applied, updating the DESCRIPTION to state the setting of
the pipe’s user ID and group ID.

Changes are made related to support for finegrained timestamps.

poll

Purpose: Input/output multiplexing.

Synopsis: #include <poll.h>

int poll(struct pollfd fds[], nfds_t nfds, int timeout);

Derivation: First released in Issue 4, Version 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #209 is applied, clarifying the POLLHUP
event.

The poll() function is moved from the XSI option to the Base.

Functionality relating to the XSI STREAMS option is marked obsolescent.

popen

Purpose: Initiate pipe streams to or from a process.

Synopsis:CX #include <stdio.h>

FILE *popen(const char *command, const char *mode);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: Austin Group Interpretation 1003.1-2001 #029 is applied, clarifying the values for
mode in the DESCRIPTION.

SD5-XSH-ERN-149 is applied, changing the {STREAM_MAX} [EMFILE] error
condition from a ‘‘may fail’’ to a ‘‘shall fail’’.

posix_fadvise

Purpose: File advisory information (ADVANCED REALTIME).

Synopsis:ADV #include <fcntl.h>

int posix_fadvise(int fd, off_t offset, off_t len,
int advice);

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

Issue 7: Austin Group Interpretation 1003.1-2001 #024 is applied, changing the definition of
the [EINVAL] error.

104 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

posix_fallocate

Purpose: File space control (ADVANCED REALTIME).

Synopsis:ADV #include <fcntl.h>

int posix_fallocate(int fd, off_t offset, off_t len);

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

Issue 7: Austin Group Interpretations 1003.1-2001 #022, #024, and #162 are applied,
changing the definition of the [EINVAL] error.

posix_madvise

Purpose: Memory advisory information and alignment control (ADVANCED REALTIME).

Synopsis:ADV #include <sys/mman.h>

int posix_madvise(void *addr, size_t len, int advice);

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

Issue 7: No functional changes are made in this issue.

posix_mem_offset

Purpose: Find offset and length of a mapped typed memory block (ADVANCED
REALTIME).

Synopsis:TYM #include <sys/mman.h>

int posix_mem_offset(const void *restrict addr, size_t len,
off_t *restrict off, size_t *restrict contig_len,
int *restrict fildes);

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1j-2000.

Issue 7: No functional changes are made in this issue.

posix_memalign

Purpose: Aligned memory allocation (ADVANCED REALTIME).

Synopsis:ADV #include <stdlib.h>

int posix_memalign(void **memptr, size_t alignment,
size_t size);

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

Issue 7: Austin Group Interpretation 1003.1-2001 #058 is applied, clarifying the value of the
alignment argument in the DESCRIPTION.

Austin Group Interpretation 1003.1-2001 #152 is applied, clarifying the behavior
when the size of the space requested is 0.

The Authorized Guide to the Single UNIX Specification, Version 4 105

System Interfaces System Interfaces Migration

posix_openpt

Purpose: Open a pseudo-terminal device.

Synopsis:XSI #include <stdlib.h>
#include <fcntl.h>

int posix_openpt(int oflag);

Derivation: First released in Issue 6.

Issue 7: SD5-XBD-ERN-4 is applied, changing the definition of the [EMFILE] error.

SD5-XSH-ERN-51 is applied, correcting an error in the EXAMPLES section.

posix_spawn, posix_spawnp

Purpose: Spawn a process (ADVANCED REALTIME).

Synopsis:SPN #include <spawn.h>

int posix_spawn(pid_t *restrict pid,
const char *restrict path,
const posix_spawn_file_actions_t *file_actions,
const posix_spawnattr_t *restrict attrp,
char *const argv[restrict], char *const envp[restrict]);

int posix_spawnp(pid_t *restrict pid,
const char *restrict file,
const posix_spawn_file_actions_t *file_actions,
const posix_spawnattr_t *restrict attrp,
char *const argv[restrict], char *const envp[restrict]);

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

Issue 7: Functionality relating to the Threads option is moved to the Base.

posix_spawn_file_actions_addclose, posix_spawn_file_actions_addopen

Purpose: Add close or open action to spawn file actions object (ADVANCED REALTIME).

Synopsis:SPN #include <spawn.h>

int posix_spawn_file_actions_addclose(
posix_spawn_file_actions_t
*file_actions, int fildes);

int posix_spawn_file_actions_addopen(
posix_spawn_file_actions_t
*restrict file_actions, int fildes,
const char *restrict path, int oflag, mode_t mode);

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

Issue 7: No functional changes are made in this issue.

106 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

posix_spawn_file_actions_adddup2

Purpose: Add dup2 action to spawn file actions object (ADVANCED REALTIME).

Synopsis:SPN #include <spawn.h>

int posix_spawn_file_actions_adddup2(
posix_spawn_file_actions_t
*file_actions, int fildes, int newfildes);

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

Issue 7: No functional changes are made in this issue.

posix_spawn_file_actions_destroy, posix_spawn_file_actions_init

Purpose: Destroy and initialize spawn file actions object (ADVANCED REALTIME).

Synopsis:SPN #include <spawn.h>

int posix_spawn_file_actions_destroy(
posix_spawn_file_actions_t
*file_actions);

int posix_spawn_file_actions_init(posix_spawn_file_actions_t
*file_actions);

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

Issue 7: No functional changes are made in this issue.

posix_spawnattr_destroy, posix_spawnattr_init

Purpose: Destroy and initialize spawn attributes object (ADVANCED REALTIME).

Synopsis:SPN #include <spawn.h>

int posix_spawnattr_destroy(posix_spawnattr_t *attr);
int posix_spawnattr_init(posix_spawnattr_t *attr);

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

Issue 7: No functional changes are made in this issue.

posix_spawnattr_getflags, posix_spawnattr_setflags

Purpose: Get and set the spawn-flags attribute of a spawn attributes object (ADVANCED
REALTIME).

Synopsis:SPN #include <spawn.h>

int posix_spawnattr_getflags(
const posix_spawnattr_t *restrict attr,
short *restrict flags);

int posix_spawnattr_setflags(
posix_spawnattr_t *attr, short flags);

The Authorized Guide to the Single UNIX Specification, Version 4 107

System Interfaces System Interfaces Migration

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

Issue 7: No functional changes are made in this issue.

posix_spawnattr_getpgroup, posix_spawnattr_setpgroup

Purpose: Get and set the spawn-pgroup attribute of a spawn attributes object (ADVANCED
REALTIME).

Synopsis:SPN #include <spawn.h>

int posix_spawnattr_getpgroup(
const posix_spawnattr_t *restrict attr,
pid_t *restrict pgroup);

int posix_spawnattr_setpgroup(posix_spawnattr_t *attr,
pid_t pgroup);

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

Issue 7: No functional changes are made in this issue.

posix_spawnattr_getschedparam, posix_spawnattr_setschedparam

Purpose: Get and set the spawn-schedparam attribute of a spawn attributes object
(ADVANCED REALTIME).

Synopsis:SPN PS #include <spawn.h>
#include <sched.h>

int posix_spawnattr_getschedparam(const posix_spawnattr_t
*restrict attr, struct sched_param *restrict schedparam);

int posix_spawnattr_setschedparam(
posix_spawnattr_t *restrict attr,
const struct sched_param *restrict schedparam);

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

Issue 7: No functional changes are made in this issue.

posix_spawnattr_getschedpolicy, posix_spawnattr_setschedpolicy

Purpose: Get and set the spawn-schedpolicy attribute of a spawn attributes object
(ADVANCED REALTIME).

Synopsis:SPN PS #include <spawn.h>
#include <sched.h>

int posix_spawnattr_getschedpolicy(const posix_spawnattr_t
*restrict attr, int *restrict schedpolicy);

int posix_spawnattr_setschedpolicy(posix_spawnattr_t *attr,
int schedpolicy);

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

Issue 7: No functional changes are made in this issue.

108 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

posix_spawnattr_getsigdefault, posix_spawnattr_setsigdefault

Purpose: Get and set the spawn-sigdefault attribute of a spawn attributes object
(ADVANCED REALTIME).

Synopsis:SPN #include <signal.h>
#include <spawn.h>

int posix_spawnattr_getsigdefault(const posix_spawnattr_t
*restrict attr, sigset_t *restrict sigdefault);

int posix_spawnattr_setsigdefault(
posix_spawnattr_t *restrict attr,
const sigset_t *restrict sigdefault);

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

Issue 7: No functional changes are made in this issue.

posix_spawnattr_getsigmask, posix_spawnattr_setsigmask

Purpose: Get and set the spawn-sigmask attribute of a spawn attributes object
(ADVANCED REALTIME).

Synopsis:SPN #include <signal.h>
#include <spawn.h>

int posix_spawnattr_getsigmask(
const posix_spawnattr_t *restrict attr,
sigset_t *restrict sigmask);

int posix_spawnattr_setsigmask(
posix_spawnattr_t *restrict attr,
const sigset_t *restrict sigmask);

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

Issue 7: No functional changes are made in this issue.

posix_trace_attr_destroy, posix_trace_attr_init

Purpose: Destroy and initialize the trace stream attributes object (TRACING).

Synopsis:OB TRC #include <trace.h>

int posix_trace_attr_destroy(trace_attr_t *attr);
int posix_trace_attr_init(trace_attr_t *attr);

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1q-2000.

Issue 7: The posix_trace_attr_destroy() and posix_trace_attr_init() functions are marked
obsolescent.

The Authorized Guide to the Single UNIX Specification, Version 4 109

System Interfaces System Interfaces Migration

posix_trace_attr_getclockres, posix_trace_attr_getcreatetime, posix_trace_attr_getgenversion,
posix_trace_attr_getname, posix_trace_attr_setname

Purpose: Retrieve and set information about a trace stream (TRACING).

Synopsis:OB TRC #include <time.h>
#include <trace.h>

int posix_trace_attr_getclockres(const trace_attr_t *attr,
struct timespec *resolution);

int posix_trace_attr_getcreatetime(const trace_attr_t *attr,
struct timespec *createtime);

#include <trace.h>

int posix_trace_attr_getgenversion(const trace_attr_t *attr,
char *genversion);

int posix_trace_attr_getname(const trace_attr_t *attr,
char *tracename);

int posix_trace_attr_setname(trace_attr_t *attr,
const char *tracename);

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1q-2000.

Issue 7: The posix_trace_attr_getclockres(), posix_trace_attr_getcreatetime(),
posix_trace_attr_getgenversion(), posix_trace_attr_getname(), and
posix_trace_attr_setname() functions are marked obsolescent.

posix_trace_attr_getinherited, posix_trace_attr_getlogfullpolicy,
posix_trace_attr_getstreamfullpolicy, posix_trace_attr_setinherited,
posix_trace_attr_setlogfullpolicy, posix_trace_attr_setstreamfullpolicy

Purpose: Retrieve and set the behavior of a trace stream (TRACING).

Synopsis:OB TRC #include <trace.h>

TRI int posix_trace_attr_getinherited(
const trace_attr_t *restrict attr,
int *restrict inheritancepolicy);

TRL int posix_trace_attr_getlogfullpolicy(
const trace_attr_t *restrict attr,
int *restrict logpolicy);

int posix_trace_attr_getstreamfullpolicy(
const trace_attr_t *restrict
attr, int *restrict streampolicy);

TRI int posix_trace_attr_setinherited(trace_attr_t *attr,
int inheritancepolicy);

TRL int posix_trace_attr_setlogfullpolicy(trace_attr_t *attr,
int logpolicy);

int posix_trace_attr_setstreamfullpolicy(trace_attr_t *attr,
int streampolicy);

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1q-2000.

Issue 7: SD5-XSH-ERN-116 is applied, adding the missing restrict keyword to the
posix_trace_attr_getstreamfullpolicy() function declaration.

These functions are marked obsolescent.

110 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

posix_trace_attr_getlogsize, posix_trace_attr_getmaxdatasize,
posix_trace_attr_getmaxsystemeventsize, posix_trace_attr_getmaxusereventsize,
posix_trace_attr_getstreamsize, posix_trace_attr_setlogsize, posix_trace_attr_setmaxdatasize,
posix_trace_attr_setstreamsize

Purpose: Retrieve and set trace stream size attributes (TRACING).

Synopsis:OB TRC #include <sys/types.h>
#include <trace.h>

TRL int posix_trace_attr_getlogsize(
const trace_attr_t *restrict attr,
size_t *restrict logsize);

int posix_trace_attr_getmaxdatasize(
const trace_attr_t *restrict attr,
size_t *restrict maxdatasize);

int posix_trace_attr_getmaxsystemeventsize(
const trace_attr_t *restrict attr,
size_t *restrict eventsize);

int posix_trace_attr_getmaxusereventsize(
const trace_attr_t *restrict attr,
size_t data_len, size_t *restrict eventsize);

int posix_trace_attr_getstreamsize(
const trace_attr_t *restrict attr,
size_t *restrict streamsize);

TRL int posix_trace_attr_setlogsize(trace_attr_t *attr,
size_t logsize);

int posix_trace_attr_setmaxdatasize(trace_attr_t *attr,
size_t maxdatasize);

int posix_trace_attr_setstreamsize(trace_attr_t *attr,
size_t streamsize);

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1q-2000.

Issue 7: These functions are marked obsolescent.

posix_trace_clear

Purpose: Clear trace stream and trace log (TRACING).

Synopsis:OB TRC #include <sys/types.h>
#include <trace.h>

int posix_trace_clear(trace_id_t trid);

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1q-2000.

Issue 7: The posix_trace_clear() function is marked obsolescent.

The Authorized Guide to the Single UNIX Specification, Version 4 111

System Interfaces System Interfaces Migration

posix_trace_close, posix_trace_open, posix_trace_rewind

Purpose: Trace log management (TRACING).

Synopsis:OB TRC #include <trace.h>

TRL int posix_trace_close(trace_id_t trid);
int posix_trace_open(int file_desc, trace_id_t *trid);
int posix_trace_rewind(trace_id_t trid);

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1q-2000.

Issue 7: The posix_trace_close(), posix_trace_open(), and posix_trace_rewind() functions are
marked obsolescent.

posix_trace_create, posix_trace_create_withlog, posix_trace_flush, posix_trace_shutdown

Purpose: Trace stream initialization, flush, and shutdown from a process (TRACING).

Synopsis:OB TRC #include <sys/types.h>
#include <trace.h>

int posix_trace_create(pid_t pid,
const trace_attr_t *restrict attr,
trace_id_t *restrict trid);

TRL int posix_trace_create_withlog(pid_t pid,
const trace_attr_t *restrict attr, int file_desc,
trace_id_t *restrict trid);

int posix_trace_flush(trace_id_t trid);
int posix_trace_shutdown(trace_id_t trid);

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1q-2000.

Issue 7: These functions are marked obsolescent.

SD5-XSH-ERN-154 is applied, updating the DESCRIPTION to remove the
posix_trace_trygetnext_event() function from the list of functions that use the trid
argument.

posix_trace_event, posix_trace_eventid_open

Purpose: Trace functions for instrumenting application code (TRACING).

Synopsis:OB TRC #include <sys/types.h>
#include <trace.h>

void posix_trace_event(trace_event_id_t event_id,
const void *restrict data_ptr, size_t data_len);

int posix_trace_eventid_open(const char *restrict event_name,
trace_event_id_t *restrict event_id);

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1q-2000.

Issue 7: The posix_trace_event() and posix_trace_eventid_open() functions are marked
obsolescent.

112 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

posix_trace_eventid_equal, posix_trace_eventid_get_name, posix_trace_trid_eventid_open

Purpose: Manipulate the trace event type identifier (TRACING).

Synopsis:OB TRC #include <trace.h>

int posix_trace_eventid_equal(trace_id_t trid,
trace_event_id_t event1,
trace_event_id_t event2);

int posix_trace_eventid_get_name(trace_id_t trid,
trace_event_id_t event, char *event_name);

TEF int posix_trace_trid_eventid_open(trace_id_t trid,
const char *restrict event_name,
trace_event_id_t *restrict event);

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1q-2000.

Issue 7: These functions are marked obsolescent.

posix_trace_eventset_add, posix_trace_eventset_del, posix_trace_eventset_empty,
posix_trace_eventset_fill, posix_trace_eventset_ismember

Purpose: Manipulate trace event type sets (TRACING).

Synopsis:OB TRC #include <trace.h>

TEF int posix_trace_eventset_add(trace_event_id_t event_id,
trace_event_set_t *set);

int posix_trace_eventset_del(trace_event_id_t event_id,
trace_event_set_t *set);

int posix_trace_eventset_empty(trace_event_set_t *set);
int posix_trace_eventset_fill(trace_event_set_t *set,

int what);
int posix_trace_eventset_ismember(trace_event_id_t event_id,

const trace_event_set_t *restrict set,
int *restrict ismember);

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1q-2000.

Issue 7: The posix_trace_eventset_add(), posix_trace_eventset_del(),
posix_trace_eventset_empty(), posix_trace_eventset_fill(), and
posix_trace_eventset_ismember() functions are marked obsolescent.

posix_trace_eventtypelist_getnext_id, posix_trace_eventtypelist_rewind

Purpose: Iterate over a mapping of trace event types (TRACING).

Synopsis:OB TRC #include <trace.h>

int posix_trace_eventtypelist_getnext_id(trace_id_t trid,
trace_event_id_t *restrict event,
int *restrict unavailable);

int posix_trace_eventtypelist_rewind(trace_id_t trid);

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1q-2000.

The Authorized Guide to the Single UNIX Specification, Version 4 113

System Interfaces System Interfaces Migration

Issue 7: The posix_trace_eventtypelist_getnext_id() and posix_trace_eventtypelist_rewind()
functions are marked obsolescent.

posix_trace_get_attr, posix_trace_get_status

Purpose: Retrieve the trace attributes or trace status (TRACING).

Synopsis:OB TRC #include <trace.h>

int posix_trace_get_attr(trace_id_t trid, trace_attr_t *attr);
int posix_trace_get_status(trace_id_t trid,

struct posix_trace_status_info *statusinfo);

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1q-2000.

Issue 7: The posix_trace_get_attr() and posix_trace_get_status() functions are marked
obsolescent.

posix_trace_get_filter, posix_trace_set_filter

Purpose: Retrieve and set the filter of an initialized trace stream (TRACING).

Synopsis:OB TRC #include <trace.h>

TEF int posix_trace_get_filter(trace_id_t trid,
trace_event_set_t *set);

int posix_trace_set_filter(trace_id_t trid,
const trace_event_set_t *set, int how);

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1q-2000.

Issue 7: The posix_trace_get_filter() and posix_trace_set_filter() functions are marked
obsolescent.

posix_trace_getnext_event, posix_trace_timedgetnext_event, posix_trace_trygetnext_event

Purpose: Retrieve a trace event (TRACING).

Synopsis:OB TRC #include <sys/types.h>
#include <trace.h>

int posix_trace_getnext_event(trace_id_t trid,
struct posix_trace_event_info *restrict event,
void *restrict data, size_t num_bytes,
size_t *restrict data_len, int *restrict unavailable);

int posix_trace_timedgetnext_event(trace_id_t trid,
struct posix_trace_event_info *restrict event,
void *restrict data, size_t num_bytes,
size_t *restrict data_len, int *restrict unavailable,
const struct timespec *restrict abstime);

int posix_trace_trygetnext_event(trace_id_t trid,
struct posix_trace_event_info *restrict event,
void *restrict data, size_t num_bytes,
size_t *restrict data_len, int *restrict unavailable);

114 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1q-2000.

Issue 7: The posix_trace_getnext_event(), posix_trace_timedgetnext_event(), and
posix_trace_trygetnext_event() functions are marked obsolescent.

Functionality relating to the Timers option is moved to the Base.

posix_trace_start, posix_trace_stop

Purpose: Trace start and stop (TRACING).

Synopsis:OB TRC #include <trace.h>

int posix_trace_start(trace_id_t trid);
int posix_trace_stop (trace_id_t trid);

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1q-2000.

Issue 7: The posix_trace_start() and posix_trace_stop() functions are marked obsolescent.

posix_typed_mem_get_info

Purpose: Query typed memory information (ADVANCED REALTIME).

Synopsis:TYM #include <sys/mman.h>

int posix_typed_mem_get_info(int fildes,
struct posix_typed_mem_info *info);

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1j-2000.

Issue 7: No functional changes are made in this issue.

posix_typed_mem_open

Purpose: Open a typed memory object (ADVANCED REALTIME).

Synopsis:TYM #include <sys/mman.h>

int posix_typed_mem_open(const char *name, int oflag,
int tflag);

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1j-2000.

Issue 7: Austin Group Interpretation 1003.1-2001 #143 is applied, allowing
implementations to support pathnames longer than {PATH_MAX}.

pow, powf, powl

Purpose: Power function.

Synopsis: #include <math.h>

double pow(double x, double y);
float powf(float x, float y);
long double powl(long double x, long double y);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

The Authorized Guide to the Single UNIX Specification, Version 4 115

System Interfaces System Interfaces Migration

Issue 7: ISO/IEC 9899: 1999 standard, Technical Corrigendum 2 #51 (SD5-XSH-ERN-81) is
applied.

pselect, select

Purpose: Synchronous I/O multiplexing.

Synopsis: #include <sys/select.h>

int pselect(int nfds, fd_set *restrict readfds,
fd_set *restrict writefds, fd_set *restrict errorfds,
const struct timespec *restrict timeout,
const sigset_t *restrict sigmask);

int select(int nfds, fd_set *restrict readfds,
fd_set *restrict writefds, fd_set *restrict errorfds,
struct timeval *restrict timeout);

void FD_CLR(int fd, fd_set *fdset);
int FD_ISSET(int fd, fd_set *fdset);
void FD_SET(int fd, fd_set *fdset);
void FD_ZERO(fd_set *fdset);

Derivation: First released in Issue 4, Version 2.

Issue 7: SD5-XSH-ERN-122 is applied, adding text to the DESCRIPTION for when a thread
is canceled during a call to pselect(), and adding example code to the RATIONALE.

Functionality relating to the XSI STREAMS option is marked obsolescent.

Functionality relating to the Threads option is moved to the Base.

psiginfo, psignal

Purpose: Print signal information to standard error.

Synopsis:CX #include <signal.h>

void psiginfo(const siginfo_t *pinfo, const char *message);
void psignal(int signum, const char *message);

The psiginfo() and psignal() functions print a message out on stderr associated with
a signal number.

Application writers should note that System V historically has psignal() and
psiginfo() in <siginfo.h>. However, the <siginfo.h> header is not specified in the
Base Definitions volume of IEEE Std 1003.1-2001, and the type siginfo_t is defined
in <signal.h>.

Derivation: First released in Issue 7. Derived from The Open Group Technical Standard, 2006,
Extended API Set Part 1.

Issue 7: First released in Issue 7.

116 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

pthread_atfork

Purpose: Register fork handlers.

Synopsis: #include <pthread.h>

int pthread_atfork(void (*prepare)(void), void (*parent)(void),
void (*child)(void));

Derivation: First released in Issue 5. Derived from the POSIX Threads Extension.

Issue 7: The pthread_atfork() function is moved from the Threads option to the Base.

SD5-XSH-ERN-145 is applied, updating the RATIONALE to confirm the
requirement that a child of a multi-threaded process may only execute async-
signal-safe operations until such time as one of the exec functions is called.

pthread_attr_destroy, pthread_attr_init

Purpose: Destroy and initialize the thread attributes object.

Synopsis: #include <pthread.h>

int pthread_attr_destroy(pthread_attr_t *attr);
int pthread_attr_init(pthread_attr_t *attr);

Derivation: First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

Issue 7: The pthread_attr_destroy() and pthread_attr_init() functions are moved from the
Threads option to the Base.

The [EINVAL] error for an uninitialized thread attributes object is removed; this
condition results in undefined behavior.

The [EBUSY] error for an already initialized thread attributes object is removed;
this condition results in undefined behavior.

pthread_attr_getdetachstate, pthread_attr_setdetachstate

Purpose: Get and set the detachstate attribute.

Synopsis: #include <pthread.h>

int pthread_attr_getdetachstate(const pthread_attr_t *attr,
int *detachstate);

int pthread_attr_setdetachstate(pthread_attr_t *attr,
int detachstate);

Derivation: First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

Issue 7: The pthread_attr_setdetachstate() and pthread_attr_getdetachstate() functions are
moved from the Threads option to the Base.

The [EINVAL] error for an uninitialized thread attributes object is removed; this
condition results in undefined behavior.

The Authorized Guide to the Single UNIX Specification, Version 4 117

System Interfaces System Interfaces Migration

pthread_attr_getguardsize, pthread_attr_setguardsize

Purpose: Get and set the thread guardsize attribute.

Synopsis: #include <pthread.h>

int pthread_attr_getguardsize(
const pthread_attr_t *restrict attr,
size_t *restrict guardsize);

int pthread_attr_setguardsize(pthread_attr_t *attr,
size_t guardsize);

Derivation: First released in Issue 5.

Issue 7: SD5-XSH-ERN-111 is applied, removing the reference to the stack attribute in the
DESCRIPTION.

SD5-XSH-ERN-175 is applied, updating the DESCRIPTION to note that the default
size of the guard area is implementation-defined.

The pthread_attr_getguardsize() and pthread_attr_setguardsize() functions are moved
from the XSI option to the Base.

The [EINVAL] error for an uninitialized thread attributes object is removed; this
condition results in undefined behavior.

pthread_attr_getinheritsched, pthread_attr_setinheritsched

Purpose: Get and set the inheritsched attribute (REALTIME THREADS).

Synopsis:TPS #include <pthread.h>

int pthread_attr_getinheritsched(
const pthread_attr_t *restrict attr,
int *restrict inheritsched);

int pthread_attr_setinheritsched(pthread_attr_t *attr,
int inheritsched);

Derivation: First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

Issue 7: The pthread_attr_getinheritsched() and pthread_attr_setinheritsched() functions are
moved from the Threads option.

The [EINVAL] error for an uninitialized thread attributes object is removed; this
condition results in undefined behavior.

pthread_attr_getschedparam, pthread_attr_setschedparam

Purpose: Get and set the schedparam attribute.

Synopsis: #include <pthread.h>

int pthread_attr_getschedparam(
const pthread_attr_t *restrict attr,
struct sched_param *restrict param);

int pthread_attr_setschedparam(pthread_attr_t *restrict attr,
const struct sched_param *restrict param);

118 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

Derivation: First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

Issue 7: The pthread_attr_getschedparam() and pthread_attr_setschedparam() functions are
moved from the Threads option to the Base.

Austin Group Interpretation 1003.1-2001 #119 is applied, clarifying the accuracy
requirements for the sched_ss_repl_period and sched_ss_init_budget values.

The [EINVAL] error for an uninitialized thread attributes object is removed; this
condition results in undefined behavior.

pthread_attr_getschedpolicy, pthread_attr_setschedpolicy

Purpose: Get and set the schedpolicy attribute (REALTIME THREADS).

Synopsis:TPS #include <pthread.h>

int pthread_attr_getschedpolicy(
const pthread_attr_t *restrict attr,
int *restrict policy);

int pthread_attr_setschedpolicy(pthread_attr_t *attr,
int policy);

Derivation: First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

Issue 7: The pthread_attr_getschedpolicy() and pthread_attr_setschedpolicy() functions are
moved from the Threads option.

The [EINVAL] error for an uninitialized thread attributes object is removed; this
condition results in undefined behavior.

pthread_attr_getscope, pthread_attr_setscope

Purpose: Get and set the contentionscope attribute (REALTIME THREADS).

Synopsis:TPS #include <pthread.h>

int pthread_attr_getscope(const pthread_attr_t *restrict attr,
int *restrict contentionscope);

int pthread_attr_setscope(pthread_attr_t *attr,
int contentionscope);

Derivation: First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

Issue 7: The pthread_attr_getscope() and pthread_attr_setscope() functions are moved from
the Threads option.

The [EINVAL] error for an uninitialized thread attributes object is removed; this
condition results in undefined behavior.

The Authorized Guide to the Single UNIX Specification, Version 4 119

System Interfaces System Interfaces Migration

pthread_attr_getstack, pthread_attr_setstack

Purpose: Get and set stack attributes.

Synopsis:TSA TSS #include <pthread.h>

int pthread_attr_getstack(const pthread_attr_t *restrict attr,
void **restrict stackaddr, size_t *restrict stacksize);

int pthread_attr_setstack(pthread_attr_t *attr,
void *stackaddr, size_t stacksize);

Derivation: First released in Issue 6.

Issue 7: SD5-XSH-ERN-66 is applied, correcting the use of attr in the [EINVAL] error
condition.

Austin Group Interpretation 1003.1-2001 #057 is applied, clarifying the behavior if
the function is called before the stackaddr attribute is set.

SD5-XSH-ERN-157 is applied, updating the APPLICATION USAGE section.

The description of the stackaddr attribute is updated in the DESCRIPTION and
APPLICATION USAGE sections.

The [EINVAL] error for an uninitialized thread attributes object is removed; this
condition results in undefined behavior.

pthread_attr_getstacksize, pthread_attr_setstacksize

Purpose: Get and set the stacksize attribute.

Synopsis:TSS #include <pthread.h>

int pthread_attr_getstacksize(
const pthread_attr_t *restrict attr,
size_t *restrict stacksize);

int pthread_attr_setstacksize(pthread_attr_t *attr,
size_t stacksize);

Derivation: First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

Issue 7: The pthread_attr_getstacksize() and pthread_attr_setstacksize() functions are moved
from the Threads option.

The [EINVAL] error for an uninitialized thread attributes object is removed; this
condition results in undefined behavior.

pthread_barrier_destroy, pthread_barrier_init

Purpose: Destroy and initialize a barrier object.

Synopsis: #include <pthread.h>

int pthread_barrier_destroy(pthread_barrier_t *barrier);
int pthread_barrier_init(pthread_barrier_t *restrict barrier,

const pthread_barrierattr_t *restrict attr,
unsigned count);

120 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1j-2000.

Issue 7: The pthread_barrier_destroy() and pthread_barrier_init() functions are moved from
the Barriers option to the Base.

The [EINVAL] error for an uninitialized barrier object and an uninitialized barrier
attributes object is removed; this condition results in undefined behavior.

The [EBUSY] error for a barrier that is in use or an already initialized barrier object
is removed; this condition results in undefined behavior.

pthread_barrier_wait

Purpose: Synchronize at a barrier.

Synopsis: #include <pthread.h>

int pthread_barrier_wait(pthread_barrier_t *barrier);

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1j-2000.

Issue 7: The pthread_barrier_wait() function is moved from the Barriers option to the Base.

The [EINVAL] error for an uninitialized barrier object is removed; this condition
results in undefined behavior.

pthread_barrierattr_destroy, pthread_barrierattr_init

Purpose: Destroy and initialize the barrier attributes object.

Synopsis: #include <pthread.h>

int pthread_barrierattr_destroy(pthread_barrierattr_t *attr);
int pthread_barrierattr_init(pthread_barrierattr_t *attr);

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1j-2000.

Issue 7: The pthread_barrierattr_destroy() and pthread_barrierattr_init() functions are moved
from the Barriers option to the Base.

The [EINVAL] error for an uninitialized barrier attributes object is removed; this
condition results in undefined behavior.

pthread_barrierattr_getpshared, pthread_barrierattr_setpshared

Purpose: Get and set the process-shared attribute of the barrier attributes object.

Synopsis:TSH #include <pthread.h>

int pthread_barrierattr_getpshared(
const pthread_barrierattr_t *restrict attr,
int *restrict pshared);

int pthread_barrierattr_setpshared(
pthread_barrierattr_t *attr, int pshared);

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1j-2000

Issue 7: The pthread_barrierattr_getpshared() and pthread_barrierattr_setpshared() functions
are moved from the Barriers option.

The [EINVAL] error for an uninitialized barrier attributes object is removed; this
condition results in undefined behavior.

The Authorized Guide to the Single UNIX Specification, Version 4 121

System Interfaces System Interfaces Migration

pthread_cancel

Purpose: Cancel execution of a thread.

Synopsis: #include <pthread.h>

int pthread_cancel(pthread_t thread);

Derivation: First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

Issue 7: The pthread_cancel() function is moved from the Threads option to the Base.

Austin Group Interpretation 1003.1-2001 #142 is applied, removing the [ESRCH]
error condition.

pthread_cleanup_pop, pthread_cleanup_push

Purpose: Establish cancellation handlers.

Synopsis: #include <pthread.h>

void pthread_cleanup_pop(int execute);
void pthread_cleanup_push(void (*routine)(void*), void *arg);

Derivation: First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

Issue 7: The pthread_cleanup_pop() and pthread_cleanup_push() functions are moved from
the Threads option to the Base.

pthread_cond_broadcast, pthread_cond_signal

Purpose: Broadcast or signal a condition.

Synopsis: #include <pthread.h>

int pthread_cond_broadcast(pthread_cond_t *cond);
int pthread_cond_signal(pthread_cond_t *cond);

Derivation: First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

Issue 7: The pthread_cond_broadcast() and pthread_cond_signal() functions are moved from
the Threads option to the Base.

The [EINVAL] error for an uninitialized condition variable is removed; this
condition results in undefined behavior.

pthread_cond_destroy, pthread_cond_init

Purpose: Destroy and initialize condition variables.

Synopsis: #include <pthread.h>

int pthread_cond_destroy(pthread_cond_t *cond);
int pthread_cond_init(pthread_cond_t *restrict cond,

const pthread_condattr_t *restrict attr);
pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

Derivation: First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

122 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

Issue 7: The pthread_cond_destroy() and pthread_cond_init() functions are moved from the
Threads option to the Base.

The [EINVAL] error for an uninitialized condition variable and an uninitialized
condition variable attributes object is removed; this condition results in undefined
behavior.

The [EBUSY] error for a condition variable already in use or an already initialized
condition variable is removed; this condition results in undefined behavior.

pthread_cond_timedwait, pthread_cond_wait

Purpose: Wait on a condition.

Synopsis: #include <pthread.h>

int pthread_cond_timedwait(pthread_cond_t *restrict cond,
pthread_mutex_t *restrict mutex,
const struct timespec *restrict abstime);

int pthread_cond_wait(pthread_cond_t *restrict cond,
pthread_mutex_t *restrict mutex);

Derivation: First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

Issue 7: SD5-XSH-ERN-44 is applied, changing the definition of the ‘‘shall fail’’ case of the
[EINVAL] error.

Changes are made from The Open Group Technical Standard, 2006, Extended API
Set Part 3.

The pthread_cond_timedwait() and pthread_cond_wait() functions are moved from
the Threads option to the Base.

The [EINVAL] error for an uninitialized condition variable or uninitialized mutex
object is removed; this condition results in undefined behavior"

The [EPERM] error is revised and moved to the ‘‘shall fail’’ list of error conditions
for the pthread_cond_timedwait() function.

The DESCRIPTION is updated to clarify the behavior when mutex is a robust
mutex.

The ERRORS section is updated to include ‘‘shall fail’’ cases for
PTHREAD_MUTEX_ERRORCHECK mutexes.

The DESCRIPTION is rewritten to clarify that undefined behavior occurs only for
mutexes where the [EPERM] error is not mandated.

pthread_condattr_destroy, pthread_condattr_init

Purpose: Destroy and initialize the condition variable attributes object.

Synopsis: #include <pthread.h>

int pthread_condattr_destroy(pthread_condattr_t *attr);
int pthread_condattr_init(pthread_condattr_t *attr);

Derivation: First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

The Authorized Guide to the Single UNIX Specification, Version 4 123

System Interfaces System Interfaces Migration

Issue 7: The pthread_condattr_destroy() and pthread_condattr_init() functions are moved
from the Threads option to the Base.

The [EINVAL] error for an uninitialized condition variable attributes object is
removed; this condition results in undefined behavior.

pthread_condattr_getclock, pthread_condattr_setclock

Purpose: Get and set the clock selection condition variable attribute.

Synopsis: #include <pthread.h>

int pthread_condattr_getclock(
const pthread_condattr_t *restrict attr,
clockid_t *restrict clock_id);

int pthread_condattr_setclock(pthread_condattr_t *attr,
clockid_t clock_id);

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1j-2000.

Issue 7: The pthread_condattr_getclock() and pthread_condattr_setclock() functions are moved
from the Clock Selection option to the Base.

The [EINVAL] error for an uninitialized condition variable attributes object is
removed; this condition results in undefined behavior.

pthread_condattr_getpshared, pthread_condattr_setpshared

Purpose: Get and set the process-shared condition variable attributes.

Synopsis:TSH #include <pthread.h>

int pthread_condattr_getpshared(
const pthread_condattr_t *restrict attr,
int *restrict pshared);

int pthread_condattr_setpshared(pthread_condattr_t *attr,
int pshared);

Derivation: First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

Issue 7: The pthread_condattr_getpshared() and pthread_condattr_setpshared() functions are
moved from the Threads option.

The [EINVAL] error for an uninitialized condition variable attributes object is
removed; this condition results in undefined behavior.

pthread_create

Purpose: Thread creation.

Synopsis: #include <pthread.h>

int pthread_create(pthread_t *restrict thread,
const pthread_attr_t *restrict attr,
void *(*start_routine)(void*), void *restrict arg);

Derivation: First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

124 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

Issue 7: The pthread_create() function is moved from the Threads option to the Base.

The [EINVAL] error for an uninitialized thread attributes object is removed; this
condition results in undefined behavior.

pthread_detach

Purpose: Detach a thread.

Synopsis: #include <pthread.h>

int pthread_detach(pthread_t thread);

Derivation: First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

Issue 7: The pthread_detach() function is moved from the Threads option to the Base.

Austin Group Interpretation 1003.1-2001 #142 is applied, removing the [ESRCH]
error condition.

The [EINVAL] error for a non-joinable thread is removed; this condition results in
undefined behavior.

pthread_equal

Purpose: Compare thread IDs.

Synopsis: #include <pthread.h>

int pthread_equal(pthread_t t1, pthread_t t2);

Derivation: First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

Issue 7: The pthread_equal() function is moved from the Threads option to the Base.

pthread_exit

Purpose: Thread termination.

Synopsis: #include <pthread.h>

void pthread_exit(void *value_ptr);

Derivation: First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

Issue 7: The pthread_exit() function is moved from the Threads option to the Base.

pthread_getconcurrency, pthread_setconcurrency

Purpose: Get and set the level of concurrency.

Synopsis:OB XSI #include <pthread.h>

int pthread_getconcurrency(void);
int pthread_setconcurrency(int new_level);

Derivation: First released in Issue 5.

The Authorized Guide to the Single UNIX Specification, Version 4 125

System Interfaces System Interfaces Migration

Issue 7: The pthread_getconcurrency() and pthread_setconcurrency() functions are marked
obsolescent.

pthread_getcpuclockid

Purpose: Access a thread CPU-time clock (ADVANCED REALTIME THREADS).

Synopsis:TCT #include <pthread.h>
#include <time.h>

int pthread_getcpuclockid(pthread_t thread_id,
clockid_t *clock_id);

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

Issue 7: The pthread_getcpuclockid() function is moved from the Threads option.

Austin Group Interpretation 1003.1-2001 #142 is applied, removing the [ESRCH]
error condition.

pthread_getschedparam, pthread_setschedparam

Purpose: Dynamic thread scheduling parameters access (REALTIME THREADS).

Synopsis:TPS #include <pthread.h>

int pthread_getschedparam(pthread_t thread,
int *restrict policy,
struct sched_param *restrict param);

int pthread_setschedparam(pthread_t thread, int policy,
const struct sched_param *param);

Derivation: First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

Issue 7: The pthread_getschedparam() and pthread_setschedparam() functions are moved from
the Threads option.

Austin Group Interpretation 1003.1-2001 #119 is applied, clarifying the accuracy
requirements for the sched_ss_repl_period and sched_ss_init_budget values.

Austin Group Interpretation 1003.1-2001 #142 is applied, removing the [ESRCH]
error condition.

pthread_getspecific, pthread_setspecific

Purpose: Thread-specific data management.

Synopsis: #include <pthread.h>

void *pthread_getspecific(pthread_key_t key);
int pthread_setspecific(pthread_key_t key, const void *value);

Derivation: First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

Issue 7: The pthread_getspecific() and pthread_setspecific() functions are moved from the
Threads option to the Base.

The [EINVAL] error for a key value not obtained from pthread_key_create() or a key

126 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

deleted with pthread_key_delete() is removed; this condition results in undefined
behavior.

pthread_join

Purpose: Wait for thread termination.

Synopsis: #include <pthread.h>

int pthread_join(pthread_t thread, void **value_ptr);

Derivation: First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

Issue 7: The pthread_join() function is moved from the Threads option to the Base.

Austin Group Interpretation 1003.1-2001 #142 is applied, removing the [ESRCH]
error condition.

The [EINVAL] error for a non-joinable thread is removed; this condition results in
undefined behavior.

The [EDEADLK] error for the calling thread is removed; this condition results in
undefined behavior.

pthread_key_create

Purpose: Thread-specific data key creation.

Synopsis: #include <pthread.h>

int pthread_key_create(pthread_key_t *key,
void (*destructor)(void*));

Derivation: First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

Issue 7: The pthread_key_create() function is moved from the Threads option to the Base.

pthread_key_delete

Purpose: Thread-specific data key deletion.

Synopsis: #include <pthread.h>

int pthread_key_delete(pthread_key_t key);

Derivation: First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

Issue 7: The pthread_key_delete() function is moved from the Threads option to the Base.

The [EINVAL] error for a key value not obtained from pthread_key_create() or a key
deleted with pthread_key_delete() is removed; this condition results in undefined
behavior.

The Authorized Guide to the Single UNIX Specification, Version 4 127

System Interfaces System Interfaces Migration

pthread_kill

Purpose: Send a signal to a thread.

Synopsis:CX #include <signal.h>

int pthread_kill(pthread_t thread, int sig);

Derivation: First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

Issue 7: The pthread_kill() function is moved from the Threads option to the Base.

Austin Group Interpretation 1003.1-2001 #142 is applied, removing the [ESRCH]
error condition.

pthread_mutex_consistent

Purpose: Mark state protected by robust mutex as consistent.

Synopsis: #include <pthread.h>

int pthread_mutex_consistent(pthread_mutex_t *mutex);

If mutex is a robust mutex in an inconsistent state, the pthread_mutex_consistent()
function can be used to mark the state protected by the mutex referenced by mutex
as consistent again.

Application writers should note that the pthread_mutex_consistent() function is only
responsible for notifying the implementation that the state protected by the mutex
has been recovered and that normal operations with the mutex can be resumed. It
is the responsibility of the application to recover the state so it can be reused. If the
application is not able to perform the recovery, it can notify the implementation
that the situation is unrecoverable by a call to pthread_mutex_unlock() without a
prior call to pthread_mutex_consistent(), in which case subsequent threads that
attempt to lock the mutex will fail to acquire the lock and be returned
[ENOTRECOVERABLE].

Derivation: First released in Issue 7. Derived from The Open Group Technical Standard, 2006,
Extended API Set Part 3.

Issue 7: First released in Issue 7.

pthread_mutex_destroy, pthread_mutex_init

Purpose: Destroy and initialize a mutex.

Synopsis: #include <pthread.h>

int pthread_mutex_destroy(pthread_mutex_t *mutex);
int pthread_mutex_init(pthread_mutex_t *restrict mutex,

const pthread_mutexattr_t *restrict attr);
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

Derivation: First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

Issue 7: Changes are made from The Open Group Technical Standard, 2006, Extended API
Set Part 3.

The pthread_mutex_destroy() and pthread_mutex_init() functions are moved from

128 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

the Threads option to the Base.

The [EINVAL] error for an uninitialized mutex or an uninitialized mutex attributes
object is removed; this condition results in undefined behavior.

The [EBUSY] error for a locked mutex, a mutex that is referenced, or an already
initialized mutex is removed; this condition results in undefined behavior.

pthread_mutex_getprioceiling, pthread_mutex_setprioceiling

Purpose: Get and set the priority ceiling of a mutex (REALTIME THREADS).

Synopsis:RPP|TPP #include <pthread.h>

int pthread_mutex_getprioceiling(
const pthread_mutex_t *restrict mutex,
int *restrict prioceiling);

int pthread_mutex_setprioceiling(
pthread_mutex_t *restrict mutex,
int prioceiling, int *restrict old_ceiling);

Derivation: First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

Issue 7: Austin Group Interpretation 1003.1-2001 #052 is applied, adding [EDEADLK] as a
‘‘may fail’’ error.

SD5-XSH-ERN-158 is applied, updating the ERRORS section to include a ‘‘shall
fail’’ error case for when the protocol attribute of mutex is
PTHREAD_PRIO_NONE.

The pthread_mutex_getprioceiling() and pthread_mutex_setprioceiling() functions are
moved from the Threads option to require support of either the Robust Mutex
Priority Protection option or the Non-Robust Mutex Priority Protection option.

The DESCRIPTION and ERRORS sections are updated to account properly for all
of the various mutex types.

pthread_mutex_lock, pthread_mutex_trylock, pthread_mutex_unlock

Purpose: Lock and unlock a mutex.

Synopsis: #include <pthread.h>

int pthread_mutex_lock(pthread_mutex_t *mutex);
int pthread_mutex_trylock(pthread_mutex_t *mutex);
int pthread_mutex_unlock(pthread_mutex_t *mutex);

Derivation: First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

Issue 7: SD5-XSH-ERN-43 is applied, marking the ‘‘shall fail’’ case of the [EINVAL] error as
dependent on the Thread Priority Protection option.

Changes are made from The Open Group Technical Standard, 2006, Extended API
Set Part 3.

The pthread_mutex_lock(), pthread_mutex_trylock(), and pthread_mutex_unlock()
functions are moved from the Threads option to the Base.

The PTHREAD_MUTEX_NORMAL, PTHREAD_MUTEX_ERRORCHECK,

The Authorized Guide to the Single UNIX Specification, Version 4 129

System Interfaces System Interfaces Migration

PTHREAD_MUTEX_RECURSIVE, and PTHREAD_MUTEX_DEFAULT extended
mutex types are moved from the XSI option to the Base.

The DESCRIPTION is updated to clarify the behavior when mutex does not refer to
an initialized mutex.

The ERRORS section is updated to account properly for all of the various mutex
types.

pthread_mutex_timedlock

Purpose: Lock a mutex.

Synopsis: #include <pthread.h>
#include <time.h>

int pthread_mutex_timedlock(pthread_mutex_t *restrict mutex,
const struct timespec *restrict abstime);

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

Issue 7: Changes are made from The Open Group Technical Standard, 2006, Extended API
Set Part 3.

The pthread_mutex_timedlock() function is moved from the Timeouts option to the
Base.

Functionality relating to the Timers option is moved to the Base.

The DESCRIPTION is updated to clarify the behavior when mutex does not refer to
an initialized mutex.

The ERRORS section is updated to account properly for all of the various mutex
types.

pthread_mutexattr_destroy, pthread_mutexattr_init

Purpose: Destroy and initialize the mutex attributes object.

Synopsis: #include <pthread.h>

int pthread_mutexattr_destroy(pthread_mutexattr_t *attr);
int pthread_mutexattr_init(pthread_mutexattr_t *attr);

Derivation: First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

Issue 7: The pthread_mutexattr_destroy() and pthread_mutexattr_init() functions are moved
from the Threads option to the Base.

The [EINVAL] error for an uninitialized mutex attributes object is removed; this
condition results in undefined behavior.

130 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

pthread_mutexattr_getprioceiling, pthread_mutexattr_setprioceiling

Purpose: Get and set the prioceiling attribute of the mutex attributes object (REALTIME
THREADS).

Synopsis:RPP|TPP #include <pthread.h>

int pthread_mutexattr_getprioceiling(
const pthread_mutexattr_t *restrict attr,
int *restrict prioceiling);

int pthread_mutexattr_setprioceiling(
pthread_mutexattr_t *attr, int prioceiling);

Derivation: First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

Issue 7: The pthread_mutexattr_getprioceiling() and pthread_mutexattr_setprioceiling()
functions are moved from the Threads option to require support of either the
Robust Mutex Priority Protection option or the Non-Robust Mutex Priority
Protection option.

The [EINVAL] error for an uninitialized mutex attributes object is removed; this
condition results in undefined behavior.

pthread_mutexattr_getprotocol, pthread_mutexattr_setprotocol

Purpose: Get and set the protocol attribute of the mutex attributes object (REALTIME
THREADS).

Synopsis:MC1 #include <pthread.h>

int pthread_mutexattr_getprotocol(const pthread_mutexattr_t
*restrict attr, int *restrict protocol);

int pthread_mutexattr_setprotocol(pthread_mutexattr_t *attr,
int protocol);

Derivation: First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

Issue 7: SD5-XSH-ERN-135 is applied, updating the DESCRIPTION to define a default
value for the protocol attribute.

SD5-XSH-ERN-188 is applied, clarifying that propagation of the priority
inheritance effect only applies if the other mutex has the protocol attribute
PTHREAD_PRIO_INHERIT.

The pthread_mutexattr_getprotocol() and pthread_mutexattr_setprotocol() functions
are moved from the Threads option to require support of either the Non-Robust
Mutex Priority Protection option or the Non-Robust Mutex Priority Inheritance
option or the Robust Mutex Priority Protection option or the Robust Mutex
Priority Inheritance option.

The [EINVAL] error for an uninitialized mutex attributes object is removed; this
condition results in undefined behavior.

The Authorized Guide to the Single UNIX Specification, Version 4 131

System Interfaces System Interfaces Migration

pthread_mutexattr_getpshared, pthread_mutexattr_setpshared

Purpose: Get and set the process-shared attribute.

Synopsis:TSH #include <pthread.h>

int pthread_mutexattr_getpshared(const pthread_mutexattr_t
*restrict attr, int *restrict pshared);

int pthread_mutexattr_setpshared(pthread_mutexattr_t *attr,
int pshared);

Derivation: First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

Issue 7: The pthread_mutexattr_getpshared() and pthread_mutexattr_setpshared() functions are
moved from the Threads option.

The [EINVAL] error for an uninitialized mutex attributes object is removed; this
condition results in undefined behavior.

pthread_mutexattr_getrobust, pthread_mutexattr_setrobust

Purpose: Get and set the mutex robust attribute.

Synopsis: #include <pthread.h>

int pthread_mutexattr_getrobust(
const pthread_mutexattr_t *restrict attr,
int *restrict robust);

int pthread_mutexattr_setrobust(pthread_mutexattr_t *attr,
int robust);

The pthread_mutexattr_getrobust() and pthread_mutexattr_setrobust() functions,
respectively, get and set the mutex robust attribute.

Valid values for robust include:

PTHREAD_MUTEX_STALLED
No special actions are taken if the owner of the mutex is terminated while
holding the mutex lock. This can lead to deadlocks if no other thread can
unlock the mutex.
This is the default value.

PTHREAD_MUTEX_ROBUST
If the process containing the owning thread of a robust mutex terminates
while holding the mutex lock, the next thread that acquires the mutex is
notified about the termination by the return value [EOWNERDEAD] from the
locking function. If the owning thread of a robust mutex terminates while
holding the mutex lock, the next thread that acquires the mutex may be
notified about the termination by the return value [EOWNERDEAD]. The
notified thread can then attempt to mark the state protected by the mutex as
consistent again by a call to pthread_mutex_consistent(). After a subsequent
successful call to pthread_mutex_unlock(), the mutex lock is released and can be
used normally by other threads. If the mutex is unlocked without a call to
pthread_mutex_consistent(), it is placed in a permanently unusable state and all
attempts to lock the mutex fail with the error [ENOTRECOVERABLE]. The
only permissible operation on such a mutex is pthread_mutex_destroy().

Application writers should note that the actions required to make the state

132 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

protected by the mutex consistent again are solely dependent on the application. If
it is not possible to make the state of a mutex consistent, robust mutexes can be
used to notify this situation by calling pthread_mutex_unlock() without a prior call
to pthread_mutex_consistent().

If the state is declared inconsistent by calling pthread_mutex_unlock() without a
prior call to pthread_mutex_consistent(), a possible approach could be to destroy the
mutex and then reinitialize it. However, it should be noted that this is possible only
in certain situations where the state protected by the mutex has to be reinitialized
and coordination achieved with other threads blocked on the mutex, because
otherwise a call to a locking function with a reference to a mutex object invalidated
by a call to pthread_mutex_destroy() results in undefined behavior.

Derivation: First released in Issue 7. Derived from The Open Group Technical Standard, 2006,
Extended API Set Part 3.

Issue 7: First released in Issue 7.

pthread_mutexattr_gettype, pthread_mutexattr_settype

Purpose: Get and set the mutex type attribute.

Synopsis: #include <pthread.h>

int pthread_mutexattr_gettype(
const pthread_mutexattr_t *restrict attr,
int *restrict type);

int pthread_mutexattr_settype(pthread_mutexattr_t *attr,
int type);

Derivation: First released in Issue 5.

Issue 7: The pthread_mutexattr_gettype() and pthread_mutexattr_settype() functions are
moved from the XSI option to the Base.

The [EINVAL] error for an uninitialized mutex attributes object is removed; this
condition results in undefined behavior.

pthread_once

Purpose: Dynamic package initialization.

Synopsis: #include <pthread.h>

int pthread_once(pthread_once_t *once_control,
void (*init_routine)(void));

pthread_once_t once_control = PTHREAD_ONCE_INIT;

Derivation: First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

Issue 7: The pthread_once() function is moved from the Threads option to the Base.

The [EINVAL] error for an uninitialized pthread_once_t object is removed; this
condition results in undefined behavior.

The Authorized Guide to the Single UNIX Specification, Version 4 133

System Interfaces System Interfaces Migration

pthread_rwlock_destroy, pthread_rwlock_init

Purpose: Destroy and initialize a read-write lock object.

Synopsis: #include <pthread.h>

int pthread_rwlock_destroy(pthread_rwlock_t *rwlock);
int pthread_rwlock_init(pthread_rwlock_t *restrict rwlock,

const pthread_rwlockattr_t *restrict attr);
XSI pthread_rwlock_t rwlock = PTHREAD_RWLOCK_INITIALIZER;

Derivation: First released in Issue 5.

Issue 7: Austin Group Interpretation 1003.1-2001 #048 is applied, adding the
PTHREAD_RWLOCK_INITIALIZER macro.

The pthread_rwlock_destroy() and pthread_rwlock_init() functions are moved from
the Threads option to the Base.

The [EINVAL] error for an uninitialized read-write lock object or read-write lock
attributes object is removed; this condition results in undefined behavior.

The [EBUSY] error for a locked read-write lock object or an already initialized
read-write lock object is removed; this condition results in undefined behavior.

pthread_rwlock_rdlock, pthread_rwlock_tryrdlock

Purpose: Lock a read-write lock object for reading.

Synopsis: #include <pthread.h>

int pthread_rwlock_rdlock(pthread_rwlock_t *rwlock);
int pthread_rwlock_tryrdlock(pthread_rwlock_t *rwlock);

Derivation: First released in Issue 5.

Issue 7: The pthread_rwlock_rdlock() and pthread_rwlock_tryrdlock() functions are moved
from the Threads option to the Base.

The [EINVAL] error for an uninitialized read-write lock object is removed; this
condition results in undefined behavior.

pthread_rwlock_timedrdlock

Purpose: Lock a read-write lock for reading.

Synopsis: #include <pthread.h>
#include <time.h>

int pthread_rwlock_timedrdlock(
pthread_rwlock_t *restrict rwlock,
const struct timespec *restrict abstime);

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1j-2000.

Issue 7: The pthread_rwlock_timedrdlock() function is moved from the Timeouts option to
the Base.

The [EINVAL] error for an uninitialized read-write lock object is removed; this
condition results in undefined behavior.

134 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

pthread_rwlock_timedwrlock

Purpose: Lock a read-write lock for writing.

Synopsis: #include <pthread.h>
#include <time.h>

int pthread_rwlock_timedwrlock(
pthread_rwlock_t *restrict rwlock,
const struct timespec *restrict abstime);

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1j-2000.

Issue 7: The pthread_rwlock_timedwrlock() function is moved from the Timeouts option to
the Base.

The [EINVAL] error for an uninitialized read-write lock object is removed; this
condition results in undefined behavior.

pthread_rwlock_trywrlock, pthread_rwlock_wrlock

Purpose: Lock a read-write lock object for writing.

Synopsis: #include <pthread.h>

int pthread_rwlock_trywrlock(pthread_rwlock_t *rwlock);
int pthread_rwlock_wrlock(pthread_rwlock_t *rwlock);

Derivation: First released in Issue 5.

Issue 7: The pthread_rwlock_trywrlock() and pthread_rwlock_wrlock() functions are moved
from the Threads option to the Base.

The [EINVAL] error for an uninitialized read-write lock object is removed; this
condition results in undefined behavior.

pthread_rwlock_unlock

Purpose: Unlock a read-write lock object.

Synopsis: #include <pthread.h>

int pthread_rwlock_unlock(pthread_rwlock_t *rwlock);

Derivation: First released in Issue 5.

Issue 7: The pthread_rwlock_unlock() function is moved from the Threads option to the
Base.

The [EINVAL] error for an uninitialized read-write lock object is removed; this
condition results in undefined behavior.

The [EPERM] error for a read-write lock object for which the current thread does
not hold a lock is removed; this condition results in undefined behavior.

The Authorized Guide to the Single UNIX Specification, Version 4 135

System Interfaces System Interfaces Migration

pthread_rwlockattr_destroy, pthread_rwlockattr_init

Purpose: Destroy and initialize the read-write lock attributes object.

Synopsis: #include <pthread.h>

int pthread_rwlockattr_destroy(pthread_rwlockattr_t *attr);
int pthread_rwlockattr_init(pthread_rwlockattr_t *attr);

Derivation: First released in Issue 5.

Issue 7: The pthread_rwlockattr_destroy() and pthread_rwlockattr_init() functions are moved
from the Threads option to the Base.

The [EINVAL] error for an uninitialized read-write lock attributes object is
removed; this condition results in undefined behavior.

pthread_rwlockattr_getpshared, pthread_rwlockattr_setpshared

Purpose: Get and set the process-shared attribute of the read-write lock attributes object.

Synopsis:TSH #include <pthread.h>

int pthread_rwlockattr_getpshared(const pthread_rwlockattr_t
*restrict attr, int *restrict pshared);

int pthread_rwlockattr_setpshared(pthread_rwlockattr_t *attr,
int pshared);

Derivation: First released in Issue 5.

Issue 7: The pthread_rwlockattr_getpshared() and pthread_rwlockattr_setpshared() functions
are moved from the Threads option.

The [EINVAL] error for an uninitialized read-write lock attributes object is
removed; this condition results in undefined behavior.

pthread_self

Purpose: Get the calling thread ID.

Synopsis: #include <pthread.h>

pthread_t pthread_self(void);

Derivation: First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

Issue 7: Austin Group Interpretation 1003.1-2001 #063 is applied, updating the RETURN
VALUE section to indicate that the pthread_self() function is always successful and
no return value is reserved to indicate an error.

The pthread_self() function is moved from the Threads option to the Base.

136 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

pthread_setcancelstate, pthread_setcanceltype, pthread_testcancel

Purpose: Set cancelability state.

Synopsis: #include <pthread.h>

int pthread_setcancelstate(int state, int *oldstate);
int pthread_setcanceltype(int type, int *oldtype);
void pthread_testcancel(void);

Derivation: First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

Issue 7: The pthread_setcancelstate(), pthread_setcanceltype(), and pthread_testcancel()
functions are moved from the Threads option to the Base.

pthread_setschedprio

Purpose: Dynamic thread scheduling parameters access (REALTIME THREADS).

Synopsis:TPS #include <pthread.h>

int pthread_setschedprio(pthread_t thread, int prio);

Derivation: First released in Issue 6. Included as a response to IEEE PASC Interpretation 1003.1
#96.

Issue 7: The pthread_setschedprio() function is moved from the Threads option.

Austin Group Interpretation 1003.1-2001 #069 is applied, updating the [EPERM]
error.

Austin Group Interpretation 1003.1-2001 #142 is applied, removing the [ESRCH]
error condition.

pthread_sigmask, sigprocmask

Purpose: Examine and change blocked signals.

Synopsis:CX #include <signal.h>

int pthread_sigmask(int how, const sigset_t *restrict set,
sigset_t *restrict oset);

int sigprocmask(int how, const sigset_t *restrict set,
sigset_t *restrict oset);

Derivation: First released in Issue 3. Included for alignment with the IEEE Std 1003.1-1988
(POSIX.1).

Issue 7: The pthread_sigmask() function is moved from the Threads option to the Base.

The Authorized Guide to the Single UNIX Specification, Version 4 137

System Interfaces System Interfaces Migration

pthread_spin_destroy, pthread_spin_init

Purpose: Destroy or initialize a spin lock object.

Synopsis: #include <pthread.h>

int pthread_spin_destroy(pthread_spinlock_t *lock);
int pthread_spin_init(pthread_spinlock_t *lock, int pshared);

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1j-2000.

Issue 7: The pthread_spin_destroy() and pthread_spin_init() functions are moved from the
Spin Locks option to the Base.

The [EINVAL] error for an uninitialized spin lock object is removed; this condition
results in undefined behavior.

The [EBUSY] error for a locked spin lock object or an already initialized spin lock
object is removed; this condition results in undefined behavior.

pthread_spin_lock, pthread_spin_trylock

Purpose: Lock a spin lock object.

Synopsis: #include <pthread.h>

int pthread_spin_lock(pthread_spinlock_t *lock);
int pthread_spin_trylock(pthread_spinlock_t *lock);

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1j-2000.

Issue 7: The pthread_spin_lock() and pthread_spin_trylock() functions are moved from the
Spin Locks option to the Base.

The [EINVAL] error for an uninitialized spin lock object is removed; this condition
results in undefined behavior.

The [EDEADLK] error for a spin lock object for which the calling thread already
holds the lock is removed; this condition results in undefined behavior.

pthread_spin_unlock

Purpose: Unlock a spin lock object.

Synopsis: #include <pthread.h>

int pthread_spin_unlock(pthread_spinlock_t *lock);

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1j-2000.

Issue 7: The pthread_spin_unlock() function is moved from the Spin Locks option to the
Base.

The [EINVAL] error for an uninitialized spin lock object is removed; this condition
results in undefined behavior.

The [EPERM] error for a spin lock object for which the current thread does not
hold the lock is removed; this condition results in undefined behavior.

138 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

ptsname

Purpose: Get name of the slave pseudo-terminal device.

Synopsis:XSI #include <stdlib.h>

char *ptsname(int fildes);

Derivation: First released in Issue 4, Version 2.

Issue 7: No functional changes are made in this issue.

putc

Purpose: Put a byte on a stream.

Synopsis: #include <stdio.h>

int putc(int c, FILE *stream);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

putchar

Purpose: Put a byte on a stdout stream.

Synopsis: #include <stdio.h>

int putchar(int c);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

putenv

Purpose: Change or add a value to an environment.

Synopsis:XSI #include <stdlib.h>

int putenv(char *string);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

putmsg, putpmsg

Purpose: Send a message on a STREAM (STREAMS).

Synopsis:OB XSR #include <stropts.h>

int putmsg(int fildes, const struct strbuf *ctlptr,
const struct strbuf *dataptr, int flags);

int putpmsg(int fildes, const struct strbuf *ctlptr,
const struct strbuf *dataptr, int band, int flags);

Derivation: First released in Issue 4, Version 2.

The Authorized Guide to the Single UNIX Specification, Version 4 139

System Interfaces System Interfaces Migration

Issue 7: The putmsg() and putpmsg() functions are marked obsolescent.

puts

Purpose: Put a string on standard output.

Synopsis: #include <stdio.h>

int puts(const char *s);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: Changes are made related to support for finegrained timestamps.

putwc

Purpose: Put a wide character on a stream.

Synopsis: #include <stdio.h>
#include <wchar.h>

wint_t putwc(wchar_t wc, FILE *stream);

Derivation: First released as a World-wide Portability Interface in Issue 4.

Issue 7: No functional changes are made in this issue.

putwchar

Purpose: Put a wide character on a stdout stream.

Synopsis: #include <wchar.h>

wint_t putwchar(wchar_t wc);

Derivation: First released in Issue 4.

Issue 7: No functional changes are made in this issue.

qsort

Purpose: Sort a table of data.

Synopsis: #include <stdlib.h>

void qsort(void *base, size_t nel, size_t width,
int (*compar)(const void *, const void *));

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

raise

Purpose: Send a signal to the executing process.

Synopsis: #include <signal.h>

int raise(int sig);

Derivation: First released in Issue 4. Derived from the IEEE Std 1003.1b-1993.

Issue 7: Functionality relating to the Threads option is moved to the Base.

140 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

rand, rand_r, srand

Purpose: Pseudo-random number generator.

Synopsis: #include <stdlib.h>

int rand(void);
OB CX int rand_r(unsigned *seed);

void srand(unsigned seed);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: The rand_r() function is marked obsolescent. Applications should use random()
instead, or erand48(), nrand48(), or jrand48() when an independent random
number sequence in multiple threads is required.

pread, read

Purpose: Read from a file.

Synopsis: #include <unistd.h>

ssize_t pread(int fildes, void *buf, size_t nbyte,
off_t offset);

ssize_t read(int fildes, void *buf, size_t nbyte);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: The pread() function is moved from the XSI option to the Base.

Functionality relating to the XSI STREAMS option is marked obsolescent.

Changes are made related to support for finegrained timestamps.

readdir, readdir_r

Purpose: Read a directory.

Synopsis: #include <dirent.h>

struct dirent *readdir(DIR *dirp);
int readdir_r(DIR *restrict dirp,

struct dirent *restrict entry,
struct dirent **restrict result);

Derivation: First released in Issue 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #059 is applied, updating the ERRORS
section.

The readdir_r() function is moved from the Thread-Safe Functions option to the
Base.

Changes are made related to support for finegrained timestamps.

The value of the d_ino member is no longer unspecified for symbolic links.

The Authorized Guide to the Single UNIX Specification, Version 4 141

System Interfaces System Interfaces Migration

readlink, readlinkat

Purpose: Read the contents of a symbolic link relative to a directory file descriptor.

Synopsis: #include <unistd.h>

ssize_t readlink(const char *restrict path,
char *restrict buf, size_t bufsize);

ssize_t readlinkat(int fd, const char *restrict path,
char *restrict buf, size_t bufsize);

The readlinkat() function is equivalent to the readlink() function except in the case
where path specifies a relative path. In this case the symbolic link whose content is
read is relative to the directory associated with the file descriptor fd instead of the
current working directory. If the file descriptor was opened without O_SEARCH,
the function checks whether directory searches are permitted using the current
permissions of the directory underlying the file descriptor. If the file descriptor was
opened with O_SEARCH, the function does not perform the check.

The purpose of the readlinkat() function is to read the content of symbolic links in
directories other than the current working directory without exposure to race
conditions. Any part of the path of a file could be changed in parallel to a call to
readlink(), resulting in unspecified behavior. By opening a file descriptor for the
target directory and using the readlinkat() function it can be guaranteed that the
symbolic link read is located relative to the desired directory.

Derivation: First released in Issue 4, Version 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #143 is applied, allowing
implementations to support pathnames longer than {PATH_MAX}.

The readlinkat() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 2.

The [EACCES] error is removed from the ‘‘may fail’’ error conditions.

The [ENOTDIR] error condition is clarified to cover the condition where the last
component of a pathname exists but is not a directory or a symbolic link to a
directory.

readv

Purpose: Read a vector.

Synopsis:XSI #include <sys/uio.h>

ssize_t readv(int fildes, const struct iovec *iov,
int iovcnt);

Derivation: First released in Issue 4, Version 2.

Issue 7: Changes are made related to support for finegrained timestamps.

142 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

realloc

Purpose: Memory reallocator.

Synopsis: #include <stdlib.h>

void *realloc(void *ptr, size_t size);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

realpath

Purpose: Resolve a pathname.

Synopsis:XSI #include <stdlib.h>

char *realpath(const char *restrict file_name,
char *restrict resolved_name);

Derivation: First released in Issue 4, Version 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #143 is applied, allowing
implementations to support pathnames longer than {PATH_MAX}.

This function is updated for passing a null pointer for the resolved_name argument,
to request that it allocate memory for the generated pathname, as if by malloc(). If
resolved_name is not a null pointer and {PATH_MAX} is not defined as a constant in
the <limits.h> header, the behavior is undefined.

recv

Purpose: Receive a message from a connected socket.

Synopsis: #include <sys/socket.h>

ssize_t recv(int socket, void *buffer, size_t length,
int flags);

Derivation: First released in Issue 6. Derived from the Commands and Utilities, Issue 5
(XCU5).

Issue 7: No functional changes are made in this issue.

recvfrom

Purpose: Receive a message from a socket.

Synopsis: #include <sys/socket.h>

ssize_t recvfrom(int socket, void *restrict buffer,
size_t length, int flags,
struct sockaddr *restrict address,
socklen_t *restrict address_len);

Derivation: First released in Issue 6. Derived from the Commands and Utilities, Issue 5
(XCU5).

Issue 7: No functional changes are made in this issue.

The Authorized Guide to the Single UNIX Specification, Version 4 143

System Interfaces System Interfaces Migration

recvmsg

Purpose: Receive a message from a socket.

Synopsis: #include <sys/socket.h>

ssize_t recvmsg(int socket, struct msghdr *message, int flags);

Derivation: First released in Issue 6. Derived from the Commands and Utilities, Issue 5
(XCU5).

Issue 7: No functional changes are made in this issue.

regcomp, regerror, regexec, regfree

Purpose: Regular expression matching.

Synopsis: #include <regex.h>

int regcomp(regex_t *restrict preg,
const char *restrict pattern, int cflags);

size_t regerror(int errcode, const regex_t *restrict preg,
char *restrict errbuf, size_t errbuf_size);

int regexec(const regex_t *restrict preg,
const char *restrict string, size_t nmatch,
regmatch_t pmatch[restrict], int eflags);

void regfree(regex_t *preg);

Derivation: First released in Issue 4. Derived from the .

Issue 7: Austin Group Interpretation 1003.1-2001 #134 is applied, clarifying that if more
than one error occurs in processing a function call, any one of the possible
constants may be returned.

SD5-XBD-ERN-60 is applied, removing the requirement that the type regoff_t can
hold the largest value that can be stored in type off_t, and adding the requirement
that the type regoff_t can hold the largest value that can be stored in type
ptrdiff_t.

remainder, remainderf, remainderl

Purpose: Remainder function.

Synopsis: #include <math.h>

double remainder(double x, double y);
float remainderf(float x, float y);
long double remainderl(long double x, long double y);

Derivation: First released in Issue 4, Version 2.

Issue 7: ISO/IEC 9899: 1999 standard, Technical Corrigendum 2 #55 (SD5-XSH-ERN-82) is
applied.

144 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

remove

Purpose: Remove a file.

Synopsis: #include <stdio.h>

int remove(const char *path);

Derivation: First released in Issue 3. Included for alignment with the IEEE Std 1003.1-1988
(POSIX.1) and the IEEE Std 1003.1i-1995.

Issue 7: No functional changes are made in this issue.

remquo, remquof, remquol

Purpose: Remainder functions.

Synopsis: #include <math.h>

double remquo(double x, double y, int *quo);
float remquof(float x, float y, int *quo);
long double remquol(long double x, long double y, int *quo);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: ISO/IEC 9899: 1999 standard, Technical Corrigendum 2 #56 (SD5-XSH-ERN-83) is
applied.

rename, renameat

Purpose: Rename file relative to directory file descriptor.

Synopsis: #include <stdio.h>

int rename(const char *old, const char *new);
CX int renameat(int oldfd, const char *old, int newfd,

const char *new);

The renameat() function is equivalent to the rename() function except in the case
where either old or new specifies a relative path. If old is a relative path, the file to
be renamed is located relative to the directory associated with the file descriptor
oldfd instead of the current working directory. If new is a relative path, the same
happens only relative to the directory associated with newfd. If the file descriptor
was opened without O_SEARCH, the function checks whether directory searches
are permitted using the current permissions of the directory underlying the file
descriptor. If the file descriptor was opened with O_SEARCH, the function does
not perform the check.

The purpose of the renameat() function is to rename files in directories other than
the current working directory without exposure to race conditions. Any part of the
path of a file could be changed in parallel to a call to rename(), resulting in
unspecified behavior. By opening file descriptors for the source and target
directories and using the renameat() function it can be guaranteed that that
renamed file is located correctly and the resulting file is in the desired directory.

Derivation: First released in Issue 3. Included for alignment with the IEEE Std 1003.1-1988
(POSIX.1).

The Authorized Guide to the Single UNIX Specification, Version 4 145

System Interfaces System Interfaces Migration

Issue 7: Austin Group Interpretation 1003.1-2001 #016 is applied, changing the definition of
the [ENOTDIR] error.

Austin Group Interpretation 1003.1-2001 #076 is applied, clarifying the behavior if
the final component of a path is either dot or dot-dot, and adding the associated
[EINVAL] error case.

Austin Group Interpretation 1003.1-2001 #143 is applied, allowing
implementations to support pathnames longer than {PATH_MAX}.

Austin Group Interpretation 1003.1-2001 #145 is applied, clarifying that the
[ENOENT] error condition also applies to the case in which a component of new
does not exist.

Austin Group Interpretation 1003.1-2001 #181 is applied, updating the
requirements for operations when the S_ISVTX bit is set on a directory.

The renameat() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 2.

Changes are made related to support for finegrained timestamps.

rewind

Purpose: Reset the file position indicator in a stream.

Synopsis: #include <stdio.h>

void rewind(FILE *stream);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

rewinddir

Purpose: Reset the position of a directory stream to the beginning of a directory.

Synopsis: #include <dirent.h>

void rewinddir(DIR *dirp);

Derivation: First released in Issue 2.

Issue 7: No functional changes are made in this issue.

rint, rintf, rintl

Purpose: Round-to-nearest integral value.

Synopsis: #include <math.h>

double rint(double x);
float rintf(float x);
long double rintl(long double x);

Derivation: First released in Issue 4, Version 2.

Issue 7: No functional changes are made in this issue.

146 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

rmdir

Purpose: Remove a directory.

Synopsis: #include <unistd.h>

int rmdir(const char *path);

Derivation: First released in Issue 3. Included for alignment with the IEEE Std 1003.1-1988
(POSIX.1).

Issue 7: Austin Group Interpretation 1003.1-2001 #143 is applied, allowing
implementations to support pathnames longer than {PATH_MAX}.

Austin Group Interpretation 1003.1-2001 #181 is applied, updating the
requirements for operations when the S_ISVTX bit is set.

Changes are made related to support for finegrained timestamps.

round, roundf, roundl

Purpose: Round to the nearest integer value in a floating-point format.

Synopsis: #include <math.h>

double round(double x);
float roundf(float x);
long double roundl(long double x);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

scalbln, scalblnf, scalblnl, scalbn, scalbnf, scalbnl

Purpose: Compute exponent using FLT_RADIX.

Synopsis: #include <math.h>

double scalbln(double x, long n);
float scalblnf(float x, long n);
long double scalblnl(long double x, long n);
double scalbn(double x, int n);
float scalbnf(float x, int n);
long double scalbnl(long double x, int n);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

sched_get_priority_max, sched_get_priority_min

Purpose: Get priority limits (REALTIME).

Synopsis:PS|TPS #include <sched.h>

int sched_get_priority_max(int policy);
int sched_get_priority_min(int policy);

Derivation: First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

The Authorized Guide to the Single UNIX Specification, Version 4 147

System Interfaces System Interfaces Migration

Issue 7: No functional changes are made in this issue.

sched_getparam

Purpose: Get scheduling parameters (REALTIME).

Synopsis:PS #include <sched.h>

int sched_getparam(pid_t pid, struct sched_param *param);

Derivation: First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

Issue 7: No functional changes are made in this issue.

sched_getscheduler

Purpose: Get scheduling policy (REALTIME).

Synopsis:PS #include <sched.h>

int sched_getscheduler(pid_t pid);

Derivation: First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

Issue 7: No functional changes are made in this issue.

sched_rr_get_interval

Purpose: Get execution time limits (REALTIME).

Synopsis:PS|TPS #include <sched.h>

int sched_rr_get_interval(pid_t pid,
struct timespec *interval);

Derivation: First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

Issue 7: No functional changes are made in this issue.

sched_setparam

Purpose: Set scheduling parameters (REALTIME).

Synopsis:PS #include <sched.h>

int sched_setparam(pid_t pid,
const struct sched_param *param);

Derivation: First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

Issue 7: Austin Group Interpretation 1003.1-2001 #061 is applied, clarifying the effect of
process scheduling on the scheduling of threads within the process.

Austin Group Interpretation 1003.1-2001 #119 is applied, clarifying the accuracy
requirements for the sched_ss_repl_period and sched_ss_init_budget values.

148 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

sched_setscheduler

Purpose: Set scheduling policy and parameters (REALTIME).

Synopsis:PS #include <sched.h>

int sched_setscheduler(pid_t pid, int policy,
const struct sched_param *param);

Derivation: First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

Issue 7: Austin Group Interpretation 1003.1-2001 #061 is applied, clarifying the effect of
process scheduling on the scheduling of threads within the process.

Austin Group Interpretation 1003.1-2001 #119 is applied, clarifying the accuracy
requirements for the sched_ss_repl_period and sched_ss_init_budget values.

sched_yield

Purpose: Yield the processor.

Synopsis: #include <sched.h>

int sched_yield(void);

Derivation: First released in Issue 5. Included for alignment with the POSIX Realtime
Extension and the POSIX Threads Extension.

Issue 7: SD5-XSH-ERN-120 is applied, adding APPLICATION USAGE.

The sched_yield() function is moved to the Base.

seekdir

Purpose: Set the position of a directory stream.

Synopsis:XSI #include <dirent.h>

void seekdir(DIR *dirp, long loc);

Derivation: First released in Issue 2.

Issue 7: SD5-XSH-ERN-200 is applied, updating the DESCRIPTION to note that the value
of loc should have been returned from an earlier call to telldir() using the same
directory stream.

sem_close

Purpose: Close a named semaphore.

Synopsis: #include <semaphore.h>

int sem_close(sem_t *sem);

Derivation: First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

Issue 7: The sem_close() function is moved from the Semaphores option to the Base.

The Authorized Guide to the Single UNIX Specification, Version 4 149

System Interfaces System Interfaces Migration

sem_destroy

Purpose: Destroy an unnamed semaphore.

Synopsis: #include <semaphore.h>

int sem_destroy(sem_t *sem);

Derivation: First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

Issue 7: The sem_destroy() function is moved from the Semaphores option to the Base.

sem_getvalue

Purpose: Get the value of a semaphore.

Synopsis: #include <semaphore.h>

int sem_getvalue(sem_t *restrict sem, int *restrict sval);

Derivation: First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

Issue 7: The sem_getvalue() function is moved from the Semaphores option to the Base.

sem_init

Purpose: Initialize an unnamed semaphore.

Synopsis: #include <semaphore.h>

int sem_init(sem_t *sem, int pshared, unsigned value);

Derivation: First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

Issue 7: SD5-XSH-ERN-176 is applied.

The sem_init() function is moved from the Semaphores option to the Base.

sem_open

Purpose: Initialize and open a named semaphore.

Synopsis: #include <semaphore.h>

sem_t *sem_open(const char *name, int oflag, ...);

Derivation: First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

Issue 7: Austin Group Interpretation 1003.1-2001 #066 is applied, updating the [ENOSPC]
error case and adding the [ENOMEM] error case.

Austin Group Interpretation 1003.1-2001 #077 is applied, clarifying the name
argument and adding [ENAMETOOLONG] as a ‘‘may fail’’ error.

Austin Group Interpretation 1003.1-2001 #141 is applied, adding FUTURE
DIRECTIONS.

SD5-XSH-ERN-170 is applied, updating the DESCRIPTION to clarify the wording
for setting the user ID and group ID of the semaphore.

The sem_open() function is moved from the Semaphores option to the Base.

150 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

sem_post

Purpose: Unlock a semaphore.

Synopsis: #include <semaphore.h>

int sem_post(sem_t *sem);

Derivation: First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

Issue 7: The sem_post() function is moved from the Semaphores option to the Base.

sem_timedwait

Purpose: Lock a semaphore.

Synopsis: #include <semaphore.h>
#include <time.h>

int sem_timedwait(sem_t *restrict sem,
const struct timespec *restrict abstime);

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1d-1999.

Issue 7: The sem_timedwait() function is moved from the Semaphores option to the Base.

Functionality relating to the Timers option is moved to the Base.

An example is added.

sem_trywait, sem_wait

Purpose: Lock a semaphore.

Synopsis: #include <semaphore.h>

int sem_trywait(sem_t *sem);
int sem_wait(sem_t *sem);

Derivation: First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

Issue 7: SD5-XSH-ERN-54 is applied, removing the sem_wait() function from the ‘‘shall
fail’’ error cases.

The sem_trywait() and sem_wait() functions are moved from the Semaphores
option to the Base.

sem_unlink

Purpose: Remove a named semaphore.

Synopsis: #include <semaphore.h>

int sem_unlink(const char *name);

Derivation: First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

Issue 7: Austin Group Interpretation 1003.1-2001 #077 is applied, changing
[ENAMETOOLONG] from a ‘‘shall fail’’ to a ‘‘may fail’’ error.

Austin Group Interpretation 1003.1-2001 #141 is applied, adding FUTURE
DIRECTIONS.

The Authorized Guide to the Single UNIX Specification, Version 4 151

System Interfaces System Interfaces Migration

The sem_unlink() function is moved from the Semaphores option to the Base.

semctl

Purpose: XSI semaphore control operations.

Synopsis:XSI #include <sys/sem.h>

int semctl(int semid, int semnum, int cmd, ...);

Derivation: First released in Issue 2. Derived from Issue 2 of the SVID.

Issue 7: No functional changes are made in this issue.

semget

Purpose: Get set of XSI semaphores.

Synopsis:XSI #include <sys/sem.h>

int semget(key_t key, int nsems, int semflg);

Derivation: First released in Issue 2. Derived from Issue 2 of the SVID.

Issue 7: No functional changes are made in this issue.

semop

Purpose: XSI semaphore operations.

Synopsis:XSI #include <sys/sem.h>

int semop(int semid, struct sembuf *sops, size_t nsops);

Derivation: First released in Issue 2. Derived from Issue 2 of the SVID.

Issue 7: SD5-XSH-ERN-171 is applied, updating the DESCRIPTION to clarify the order in
which the operations in sops will be performed when there are multiple operations.

send

Purpose: Send a message on a socket.

Synopsis: #include <sys/socket.h>

ssize_t send(int socket, const void *buffer,
size_t length, int flags);

Derivation: First released in Issue 6. Derived from the Commands and Utilities, Issue 5
(XCU5).

Issue 7: Austin Group Interpretation 1003.1-2001 #035 is applied, updating the
DESCRIPTION to clarify the behavior when the socket is a connectionless-mode
socket.

152 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

The MSG_NOSIGNAL flag is added from The Open Group Technical Standard,
2006, Extended API Set Part 2.

The [EPIPE] error is modified.

sendmsg

Purpose: Send a message on a socket using a message structure.

Synopsis: #include <sys/socket.h>

ssize_t sendmsg(int socket, const struct msghdr *message,
int flags);

Derivation: First released in Issue 6. Derived from the Commands and Utilities, Issue 5
(XCU5).

Issue 7: Austin Group Interpretation 1003.1-2001 #073 is applied, describing the allowed
behaviors when a peer address has been pre-specified.

Austin Group Interpretation 1003.1-2001 #143 is applied, allowing
implementations to support pathnames longer than {PATH_MAX}.

The MSG_NOSIGNAL flag is added from The Open Group Technical Standard,
2006, Extended API Set Part 2.

The [EPIPE] error is modified.

sendto

Purpose: Send a message on a socket.

Synopsis: #include <sys/socket.h>

ssize_t sendto(int socket, const void *message, size_t length,
int flags, const struct sockaddr *dest_addr,
socklen_t dest_len);

Derivation: First released in Issue 6. Derived from the Commands and Utilities, Issue 5
(XCU5).

Issue 7: Austin Group Interpretations 1003.1-2001 #035 and #073 are applied, describing the
allowed behaviors when a peer address has been pre-specified.

Austin Group Interpretation 1003.1-2001 #143 is applied, allowing
implementations to support pathnames longer than {PATH_MAX}.

The MSG_NOSIGNAL flag is added from The Open Group Technical Standard,
2006, Extended API Set Part 2.

The [EPIPE] error is modified.

setbuf

Purpose: Assign buffering to a stream.

Synopsis: #include <stdio.h>

void setbuf(FILE *restrict stream, char *restrict buf);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

The Authorized Guide to the Single UNIX Specification, Version 4 153

System Interfaces System Interfaces Migration

Issue 7: No functional changes are made in this issue.

setegid

Purpose: Set the effective group ID.

Synopsis: #include <unistd.h>

int setegid(gid_t gid);

Derivation: First released in Issue 6. Derived from the IEEE P1003.1a draft standard.

Issue 7: No functional changes are made in this issue.

setenv

Purpose: Add or change environment variable.

Synopsis:CX #include <stdlib.h>

int setenv(const char *envname, const char *envval,
int overwrite);

Derivation: First released in Issue 6. Derived from the IEEE P1003.1a draft standard.

Issue 7: No functional changes are made in this issue.

seteuid

Purpose: Set effective user ID.

Synopsis: #include <unistd.h>

int seteuid(uid_t uid);

Derivation: First released in Issue 6. Derived from the IEEE P1003.1a draft standard.

Issue 7: No functional changes are made in this issue.

setgid

Purpose: Set group ID.

Synopsis: #include <unistd.h>

int setgid(gid_t gid);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

setjmp

Purpose: Set jump point for a non-local goto.

Synopsis: #include <setjmp.h>

int setjmp(jmp_buf env);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

154 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

setkey

Purpose: Set encoding key (CRYPT).

Synopsis:XSI #include <stdlib.h>

void setkey(const char *key);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

setlocale

Purpose: Set program locale.

Synopsis: #include <locale.h>

char *setlocale(int category, const char *locale);

Derivation: First released in Issue 3.

Issue 7: Functionality relating to the Threads option is moved to the Base.

setpgid

Purpose: Set process group ID for job control.

Synopsis: #include <unistd.h>

int setpgid(pid_t pid, pid_t pgid);

Derivation: First released in Issue 3. Included for alignment with the IEEE Std 1003.1-1988
(POSIX.1).

Issue 7: No functional changes are made in this issue.

setpgrp

Purpose: Set the process group ID.

Synopsis:OB XSI #include <unistd.h>

pid_t setpgrp(void);

Derivation: First released in Issue 4, Version 2.

Issue 7: The setpgrp() function is marked obsolescent. Applications should use setpgid() or
setsid() as appropriate.

setregid

Purpose: Set real and effective group IDs.

Synopsis:XSI #include <unistd.h>

int setregid(gid_t rgid, gid_t egid);

Derivation: First released in Issue 4, Version 2.

The Authorized Guide to the Single UNIX Specification, Version 4 155

System Interfaces System Interfaces Migration

Issue 7: SD5-XSH-ERN-177 is applied, adding the ability to set both the effective group ID
and saved set-group-ID to be the same as the real group ID.

setreuid

Purpose: Set real and effective user IDs.

Synopsis:XSI #include <unistd.h>

int setreuid(uid_t ruid, uid_t euid);

Derivation: First released in Issue 4, Version 2.

Issue 7: SD5-XSH-ERN-177 is applied, adding the ability to set both the effective user ID
and the saved set-user-ID to be the same as the real user ID.

setsid

Purpose: Create session and set process group ID.

Synopsis: #include <unistd.h>

pid_t setsid(void);

Derivation: First released in Issue 3. Included for alignment with the IEEE Std 1003.1-1988
(POSIX.1).

Issue 7: No functional changes are made in this issue.

setsockopt

Purpose: Set the socket options.

Synopsis: #include <sys/socket.h>

int setsockopt(int socket, int level, int option_name,
const void *option_value, socklen_t option_len);

Derivation: First released in Issue 6. Derived from the Commands and Utilities, Issue 5
(XCU5).

Issue 7: Austin Group Interpretation 1003.1-2001 #158 is applied, removing text relating to
socket options that is now in XSH Section 2.10.16 .

setuid

Purpose: Set user ID.

Synopsis: #include <unistd.h>

int setuid(uid_t uid);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

156 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

setvbuf

Purpose: Assign buffering to a stream.

Synopsis: #include <stdio.h>

int setvbuf(FILE *restrict stream, char *restrict buf,
int type, size_t size);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

shm_open

Purpose: Open a shared memory object (REALTIME).

Synopsis:SHM #include <sys/mman.h>

int shm_open(const char *name, int oflag, mode_t mode);

Derivation: First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

Issue 7: Austin Group Interpretation 1003.1-2001 #077 is applied, clarifying the name
argument and changing [ENAMETOOLONG] from a ‘‘shall fail’’ to a ‘‘may fail’’
error.

Austin Group Interpretation 1003.1-2001 #141 is applied, adding FUTURE
DIRECTIONS.

SD5-XSH-ERN-170 is applied, updating the DESCRIPTION to clarify the wording
for setting the user ID and group ID of the shared memory object.

shm_unlink

Purpose: Remove a shared memory object (REALTIME).

Synopsis:SHM #include <sys/mman.h>

int shm_unlink(const char *name);

Derivation: First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

Issue 7: Austin Group Interpretation 1003.1-2001 #077 is applied, changing
[ENAMETOOLONG] from a ‘‘shall fail’’ to a ‘‘may fail’’ error.

Austin Group Interpretation 1003.1-2001 #141 is applied, adding FUTURE
DIRECTIONS.

shmat

Purpose: XSI shared memory attach operation.

Synopsis:XSI #include <sys/shm.h>

void *shmat(int shmid, const void *shmaddr, int shmflg);

The Authorized Guide to the Single UNIX Specification, Version 4 157

System Interfaces System Interfaces Migration

Derivation: First released in Issue 2. Derived from Issue 2 of the SVID.

Issue 7: No functional changes are made in this issue.

shmctl

Purpose: XSI shared memory control operations.

Synopsis:XSI #include <sys/shm.h>

int shmctl(int shmid, int cmd, struct shmid_ds *buf);

Derivation: First released in Issue 2. Derived from Issue 2 of the SVID.

Issue 7: No functional changes are made in this issue.

shmdt

Purpose: XSI shared memory detach operation.

Synopsis:XSI #include <sys/shm.h>

int shmdt(const void *shmaddr);

Derivation: First released in Issue 2. Derived from Issue 2 of the SVID.

Issue 7: No functional changes are made in this issue.

shmget

Purpose: Get an XSI shared memory segment.

Synopsis:XSI #include <sys/shm.h>

int shmget(key_t key, size_t size, int shmflg);

Derivation: First released in Issue 2. Derived from Issue 2 of the SVID.

Issue 7: No functional changes are made in this issue.

shutdown

Purpose: Shut down socket send and receive operations.

Synopsis: #include <sys/socket.h>

int shutdown(int socket, int how);

Derivation: First released in Issue 6. Derived from the Commands and Utilities, Issue 5
(XCU5).

Issue 7: No functional changes are made in this issue.

158 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

sigaction

Purpose: Examine and change a signal action.

Synopsis:CX #include <signal.h>

int sigaction(int sig, const struct sigaction *restrict act,
struct sigaction *restrict oact);

Derivation: First released in Issue 3. Included for alignment with the IEEE Std 1003.1-1988
(POSIX.1).

Issue 7: Austin Group Interpretation 1003.1-2001 #004 is applied, clarifying that the
sigaction() function may fail if the SA_SIGINFO flag is set in the sa_flags field of the
sigaction structure for a signal not in the range SIGRTMIN to SIGRTMAX.

Austin Group Interpretations 1003.1-2001 #065 and #084 are applied, clarifying the
role of the SA_NODEFER flag with respect to the signal mask, and clarifying the
SA_RESTART flag for interrupted functions which use timeouts.

SD5-XSH-ERN-167 is applied, updating the APPLICATION USAGE section to
explain that unless all signal handlers have errno set on return as it was on entry,
the value of errno is unspecified.

SD5-XSH-ERN-172 is applied, updating the DESCRIPTION to make optional the
requirement that when the SA_RESETHAND flag is set, sigaction() shall behave as
if the SA_NODEFER flag were also set.

Functionality relating to the Realtime Signals Extension option is moved to the
Base.

The description of the si_code member is replaced with a reference to XSH Section
2.4.3 .

sigaddset

Purpose: Add a signal to a signal set.

Synopsis:CX #include <signal.h>

int sigaddset(sigset_t *set, int signo);

Derivation: First released in Issue 3. Included for alignment with the IEEE Std 1003.1-1988
(POSIX.1).

Issue 7: No functional changes are made in this issue.

sigaltstack

Purpose: Set and get signal alternate stack context.

Synopsis:XSI #include <signal.h>

int sigaltstack(const stack_t *restrict ss,
stack_t *restrict oss);

Derivation: First released in Issue 4, Version 2.

The Authorized Guide to the Single UNIX Specification, Version 4 159

System Interfaces System Interfaces Migration

Issue 7: No functional changes are made in this issue.

sigdelset

Purpose: Delete a signal from a signal set.

Synopsis:CX #include <signal.h>

int sigdelset(sigset_t *set, int signo);

Derivation: First released in Issue 3. Included for alignment with the IEEE Std 1003.1-1988
(POSIX.1).

Issue 7: No functional changes are made in this issue.

sigemptyset

Purpose: Initialize and empty a signal set.

Synopsis:CX #include <signal.h>

int sigemptyset(sigset_t *set);

Derivation: First released in Issue 3. Included for alignment with the IEEE Std 1003.1-1988
(POSIX.1).

Issue 7: No functional changes are made in this issue.

sigfillset

Purpose: Initialize and fill a signal set.

Synopsis:CX #include <signal.h>

int sigfillset(sigset_t *set);

Derivation: First released in Issue 3. Included for alignment with the IEEE Std 1003.1-1988
(POSIX.1).

Issue 7: No functional changes are made in this issue.

sighold, sigignore, sigpause, sigrelse, sigset

Purpose: Signal management.

Synopsis:OB XSI #include <signal.h>

int sighold(int sig);
int sigignore(int sig);
int sigpause(int sig);
int sigrelse(int sig);
void (*sigset(int sig, void (*disp)(int)))(int);

Derivation: First released in Issue 4, Version 2.

Issue 7: These functions are marked obsolescent. Applications should use the sigaction()
function instead of the sigset() function, the pthread_sigmask() or sigprocmask()
functions instead of the sighold() and sigrelse() functions, and the sigsuspend()
function instead of the sigpause() function.

160 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

siginterrupt

Purpose: Allow signals to interrupt functions.

Synopsis:OB XSI #include <signal.h>

int siginterrupt(int sig, int flag);

Derivation: First released in Issue 4, Version 2.

Issue 7: The siginterrupt() function is marked obsolescent. Applications should use
sigaction() with the SA_RESTART flag instead.

sigismember

Purpose: Test for a signal in a signal set.

Synopsis:CX #include <signal.h>

int sigismember(const sigset_t *set, int signo);

Derivation: First released in Issue 3. Included for alignment with the IEEE Std 1003.1-1988
(POSIX.1).

Issue 7: No functional changes are made in this issue.

siglongjmp

Purpose: Non-local goto with signal handling.

Synopsis:CX #include <setjmp.h>

void siglongjmp(sigjmp_buf env, int val);

Derivation: First released in Issue 3. Included for alignment with the .

Issue 7: No functional changes are made in this issue.

signal

Purpose: Signal management.

Synopsis: #include <signal.h>

void (*signal(int sig, void (*func)(int)))(int);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

signbit

Purpose: Test sign.

Synopsis: #include <math.h>

int signbit(real-floating x);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

The Authorized Guide to the Single UNIX Specification, Version 4 161

System Interfaces System Interfaces Migration

Issue 7: No functional changes are made in this issue.

sigpending

Purpose: Examine pending signals.

Synopsis:CX #include <signal.h>

int sigpending(sigset_t *set);

Derivation: First released in Issue 3.

Issue 7: No functional changes are made in this issue.

sigqueue

Purpose: Queue a signal to a process.

Synopsis:CX #include <signal.h>

int sigqueue(pid_t pid, int signo, const union sigval value);

Derivation: First released in Issue 5. Included for alignment with the POSIX Realtime
Extension and the POSIX Threads Extension.

Issue 7: The sigqueue() function is moved from the Realtime Signals Extension option to the
Base.

sigsetjmp

Purpose: Set jump point for a non-local goto.

Synopsis:CX #include <setjmp.h>

int sigsetjmp(sigjmp_buf env, int savemask);

Derivation: First released in Issue 3. Included for alignment with the IEEE Std 1003.1-1988
(POSIX.1).

Issue 7: No functional changes are made in this issue.

sigsuspend

Purpose: Wait for a signal.

Synopsis:CX #include <signal.h>

int sigsuspend(const sigset_t *sigmask);

Derivation: First released in Issue 3. Included for alignment with the IEEE Std 1003.1-1988
(POSIX.1).

Issue 7: SD5-XSH-ERN-122 is applied, adding the example code in the RATIONALE.

162 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

sigtimedwait, sigwaitinfo

Purpose: Wait for queued signals.

Synopsis:CX #include <signal.h>

int sigtimedwait(const sigset_t *restrict set,
siginfo_t *restrict info,
const struct timespec *restrict timeout);

int sigwaitinfo(const sigset_t *restrict set,
siginfo_t *restrict info);

Derivation: First released in Issue 5. Included for alignment with the POSIX Realtime
Extension and the POSIX Threads Extension.

Issue 7: The sigtimedwait() and sigwaitinfo() functions are moved from the Realtime Signals
Extension option to the Base.

sigwait

Purpose: Wait for queued signals.

Synopsis:CX #include <signal.h>

int sigwait(const sigset_t *restrict set, int *restrict sig);

Derivation: First released in Issue 5. Included for alignment with the POSIX Realtime
Extension and the POSIX Threads Extension.

Issue 7: Functionality relating to the Realtime Signals Extension option is moved to the
Base.

sin, sinf, sinl

Purpose: Sine function.

Synopsis: #include <math.h>

double sin(double x);
float sinf(float x);
long double sinl(long double x);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

sinh, sinhf, sinhl

Purpose: Hyperbolic sine functions.

Synopsis: #include <math.h>

double sinh(double x);
float sinhf(float x);
long double sinhl(long double x);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

The Authorized Guide to the Single UNIX Specification, Version 4 163

System Interfaces System Interfaces Migration

sleep

Purpose: Suspend execution for an interval of time.

Synopsis: #include <unistd.h>

unsigned sleep(unsigned seconds);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

sockatmark

Purpose: Determine whether a socket is at the out-of-band mark.

Synopsis: #include <sys/socket.h>

int sockatmark(int s);

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1g-2000.

Issue 7: SD5-XSH-ERN-100 is applied, correcting the definition of the [ENOTTY] error
condition.

socket

Purpose: Create an endpoint for communication.

Synopsis: #include <sys/socket.h>

int socket(int domain, int type, int protocol);

Derivation: First released in Issue 6. Derived from the Commands and Utilities, Issue 5
(XCU5).

Issue 7: No functional changes are made in this issue.

socketpair

Purpose: Create a pair of connected sockets.

Synopsis: #include <sys/socket.h>

int socketpair(int domain, int type, int protocol,
int socket_vector[2]);

Derivation: First released in Issue 6. Derived from the Commands and Utilities, Issue 5
(XCU5).

Issue 7: The description of the [EMFILE] error condition is aligned with the pipe() function.

sqrt, sqrtf, sqrtl

Purpose: Square root function.

Synopsis: #include <math.h>

double sqrt(double x);
float sqrtf(float x);
long double sqrtl(long double x);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

164 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

Issue 7: No functional changes are made in this issue.

stderr, stdin, stdout

Purpose: Standard I/O streams.

Synopsis: #include <stdio.h>

extern FILE *stderr, *stdin, *stdout;

Derivation: First released in Issue 1.

Issue 7: No functional changes are made in this issue.

strcasecmp, strcasecmp_l, strncasecmp, strncasecmp_l

Purpose: Case-insensitive string comparisons.

Synopsis: #include <strings.h>

int strcasecmp(const char *s1, const char *s2);
int strcasecmp_l(const char *s1, const char *s2,

locale_t locale);
int strncasecmp(const char *s1, const char *s2, size_t n);
int strncasecmp_l(const char *s1, const char *s2,

size_t n, locale_t locale);

The strcasecmp_l() function compares, while ignoring differences in case, the string
pointed to by s1 to the string pointed to by s2. The strncasecmp_l() function
compares, while ignoring differences in case, not more than n bytes from the string
pointed to by s1 to the string pointed to by s2.

These functions use the locale represented by locale to determine the case of the
characters. A handle for use as locale can be obtained using newlocale() or
duplocale().

Derivation: First released in Issue 4, Version 2.

Issue 7: The strcasecmp() and strncasecmp() functions are moved from the XSI option to the
Base.

The strcasecmp_l() and strncasecmp_l() functions are added from The Open Group
Technical Standard, 2006, Extended API Set Part 4.

strcat

Purpose: Concatenate two strings.

Synopsis: #include <string.h>

char *strcat(char *restrict s1, const char *restrict s2);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

The Authorized Guide to the Single UNIX Specification, Version 4 165

System Interfaces System Interfaces Migration

strchr

Purpose: String scanning operation.

Synopsis: #include <string.h>

char *strchr(const char *s, int c);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

strcmp

Purpose: Compare two strings.

Synopsis: #include <string.h>

int strcmp(const char *s1, const char *s2);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

strcoll, strcoll_l

Purpose: String comparison using collating information.

Synopsis: #include <string.h>

int strcoll(const char *s1, const char *s2);
CX int strcoll_l(const char *s1, const char *s2,

locale_t locale);

The strcoll_l() function compares the string pointed to by s1 to the string pointed to
by s2, both interpreted as appropriate to the LC_COLLATE category of the locale
represented by locale.

A handle for use as locale can be obtained using newlocale() or duplocale().

Derivation: First released in Issue 3.

Issue 7: The strcoll_l() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 4.

stpcpy, strcpy

Purpose: Copy a string and return a pointer to the end of the result.

Synopsis: #include <string.h>

CX char *stpcpy(char *restrict s1, const char *restrict s2);
char *strcpy(char *restrict s1, const char *restrict s2);

The stpcpy() function is equivalent to the strcpy() function, except that it returns a
pointer to the terminating NUL character copied into the s1 buffer.

The following example constructs a multi-part message in a single buffer:

#include <string.h>
#include <stdio.h>

int
main (void)

166 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

{
char buffer [10];
char *name = buffer;

name = stpcpy (stpcpy (stpcpy (name, "ice"),"-"), "cream");
puts (buffer);
return 0;

}

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: The stpcpy() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 1.

strcspn

Purpose: Get the length of a complementary substring.

Synopsis: #include <string.h>

size_t strcspn(const char *s1, const char *s2);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

strdup, strndup

Purpose: Duplicate a specific number of bytes from a string.

Synopsis:CX #include <string.h>

char *strdup(const char *s);
char *strndup(const char *s, size_t size);

The strndup() function is equivalent to the strdup() function, duplicating the
provided s in a new block of memory allocated as if by using malloc(), with the
exception being that strndup() copies at most size plus one bytes into the newly
allocated memory, terminating the new string with a NUL character. If the length
of s is larger than size, only size bytes are duplicated. If size is larger than the length
of s, all bytes in s are copied into the new memory buffer, including the
terminating NUL character. The newly created string is always properly
terminated.

Derivation: First released in Issue 4, Version 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #044 is applied, changing the ‘‘may fail’’
[ENOMEM] error to become a ‘‘shall fail’’ error.

The strdup() function is moved from the XSI option to the Base.

The strndup() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 1.

The APPLICATION USAGE section is updated to clarify that memory is allocated
as if by malloc().

The Authorized Guide to the Single UNIX Specification, Version 4 167

System Interfaces System Interfaces Migration

strerror, strerror_l, strerror_r

Purpose: Get error message string.

Synopsis: #include <string.h>

char *strerror(int errnum);
CX char *strerror_l(int errnum, locale_t locale);

int strerror_r(int errnum, char *strerrbuf, size_t buflen);

Derivation: First released in Issue 3.

Issue 7: Austin Group Interpretation 1003.1-2001 #187 is applied, clarifying the behavior
when the generated error message is an empty string.

SD5-XSH-ERN-191 is applied, disallowing perror() from overwriting the string
returned by strerror(), for alignment with the C Standard.

The strerror_l() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 4.

The strerror_r() function is moved from the Thread-Safe Functions option to the
Base.

strfmon, strfmon_l

Purpose: Convert monetary value to a string.

Synopsis: #include <monetary.h>

ssize_t strfmon(char *restrict s, size_t maxsize,
const char *restrict format, ...);

ssize_t strfmon_l(char *restrict s, size_t maxsize,
locale_t locale, const char *restrict format, ...);

The strfmon_l() function is equivalent to the strfmon() function, except that the
locale data used is from the locale represented by locale. A handle for use as locale
can be obtained using newlocale() or duplocale().

Derivation: First released in Issue 4.

Issue 7: SD5-XSH-ERN-29 is applied, updating the examples for %(#5n and %!(#5n.

SD5-XSH-ERN-233 is applied, changing the definition of the ’+’ or ’(’ flags to
refer to multiple locales.

The strfmon() function is moved from the XSI option to the Base.

The strfmon_l() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 4.

strftime, strftime_l

Purpose: Convert date and time to a string.

Synopsis: #include <time.h>

size_t strftime(char *restrict s, size_t maxsize,
const char *restrict format,
const struct tm *restrict timeptr);

CX size_t strftime_l(char *restrict s, size_t maxsize,
const char *restrict format,

168 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

const struct tm *restrict timeptr, locale_t locale);

Derivation: First released in Issue 3.

Issue 7: Austin Group Interpretation 1003.1-2001 #163 is applied, making extensive
changes to the required behavior of the strftime() function, including the addition
of flags and field widths in conversion specifications.

The strftime_l() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 4.

strlen, strnlen

Purpose: Get length of fixed size string.

Synopsis: #include <string.h>

size_t strlen(const char *s);
CX size_t strnlen(const char *s, size_t maxlen);

The strnlen() function computes the smaller of the number of bytes in the array to
which s points, not including the terminating NUL character, or the value of the
maxlen argument. The strnlen() function never examines more than maxlen bytes of
the array pointed to by s.

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: The strnlen() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 1.

strncat

Purpose: Concatenate a string with part of another.

Synopsis: #include <string.h>

char *strncat(char *restrict s1, const char *restrict s2,
size_t n);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

strncmp

Purpose: Compare part of two strings.

Synopsis: #include <string.h>

int strncmp(const char *s1, const char *s2, size_t n);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

The Authorized Guide to the Single UNIX Specification, Version 4 169

System Interfaces System Interfaces Migration

stpncpy, strncpy

Purpose: Copy fixed length string, returning a pointer to the array end.

Synopsis: #include <string.h>

CX char *stpncpy(char *restrict s1, const char *restrict s2,
size_t n);

char *strncpy(char *restrict s1, const char *restrict s2,
size_t n);

The stpncpy() function is equivalent to the strncpy() function, except for the return
value. If a NUL character is written to the destination, the stpncpy() function
returns the address of the first such NUL character. Otherwise, it returns &s1[n].

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: The stpncpy() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 1.

strpbrk

Purpose: Scan a string for a byte.

Synopsis: #include <string.h>

char *strpbrk(const char *s1, const char *s2);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

strptime

Purpose: Date and time conversion.

Synopsis:XSI #include <time.h>

char *strptime(const char *restrict buf,
const char *restrict format,
struct tm *restrict tm);

Derivation: First released in Issue 4.

Issue 7: Austin Group Interpretations 1003.1-2001 #041 and #163 are applied, making
extensive changes to the required behavior of the strptime() function, including the
addition of flags and field widths in conversion specifications.

SD5-XSH-ERN-67 is applied, correcting the APPLICATION USAGE to remove the
impression that %Y is 4-digit years.

strrchr

Purpose: String scanning operation.

Synopsis: #include <string.h>

char *strrchr(const char *s, int c);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

170 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

Issue 7: No functional changes are made in this issue.

strsignal

Purpose: Get name of signal.

Synopsis:CX #include <string.h>

char *strsignal(int signum);

The strsignal() function maps the signal number in signum to an implementation-
defined string and returns a pointer to it. It uses the same set of messages as the
psignal() function.

Application writers should note that if signum is not a valid signal number, some
implementations return NULL, while for others the strsignal() function returns a
pointer to a string containing an unspecified message denoting an unknown
signal. IEEE Std 1003.1-2001 leaves this return value unspecified.

Derivation: First released in Issue 7. Derived from The Open Group Technical Standard, 2006,
Extended API Set Part 1.

Issue 7: First released in Issue 7.

strspn

Purpose: Get length of a substring.

Synopsis: #include <string.h>

size_t strspn(const char *s1, const char *s2);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

strstr

Purpose: Find a substring.

Synopsis: #include <string.h>

char *strstr(const char *s1, const char *s2);

Derivation: First released in Issue 3. Included for alignment with the IEEE Std 1003.1b-1993.

Issue 7: No functional changes are made in this issue.

strtod, strtof, strtold

Purpose: Convert a string to a double-precision number.

Synopsis: #include <stdlib.h>

double strtod(const char *restrict nptr,
char **restrict endptr);

float strtof(const char *restrict nptr,
char **restrict endptr);

long double strtold(const char *restrict nptr,
char **restrict endptr);

The Authorized Guide to the Single UNIX Specification, Version 4 171

System Interfaces System Interfaces Migration

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

strtoimax, strtoumax

Purpose: Convert string to integer type.

Synopsis: #include <inttypes.h>

intmax_t strtoimax(const char *restrict nptr,
char **restrict endptr, int base);

uintmax_t strtoumax(const char *restrict nptr,
char **restrict endptr, int base);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

strtok, strtok_r

Purpose: Split string into tokens.

Synopsis: #include <string.h>

char *strtok(char *restrict s1, const char *restrict s2);
CX char *strtok_r(char *restrict s, const char *restrict sep,

char **restrict lasts);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: SD5-XSH-ERN-235 is applied, correcting an example.

The strtok_r() function is moved from the Thread-Safe Functions option to the
Base.

strtol, strtoll

Purpose: Convert a string to a long integer.

Synopsis: #include <stdlib.h>

long strtol(const char *restrict str,
char **restrict endptr, int base);

long long strtoll(const char *restrict str,
char **restrict endptr, int base)

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

strtoul, strtoull

Purpose: Convert a string to an unsigned long.

Synopsis: #include <stdlib.h>

unsigned long strtoul(const char *restrict str,
char **restrict endptr, int base);

unsigned long long strtoull(const char *restrict str,
char **restrict endptr, int base);

172 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

Derivation: First released in Issue 4. Derived from the IEEE Std 1003.1b-1993.

Issue 7: No functional changes are made in this issue.

strxfrm, strxfrm_l

Purpose: String transformation.

Synopsis: #include <string.h>

size_t strxfrm(char *restrict s1, const char *restrict s2,
size_t n);

CX size_t strxfrm_l(char *restrict s1, const char *restrict s2,
size_t n, locale_t locale);

The strxfrm_l() function is equivalent to the strxfrm() function, except that the
locale data used is from the locale represented by locale. A handle for use as locale
can be obtained using newlocale() or duplocale().

Derivation: First released in Issue 3. Included for alignment with the IEEE Std 1003.1i-1995.

Issue 7: The strxfrm_l() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 4.

swab

Purpose: Swap bytes.

Synopsis:XSI #include <unistd.h>

void swab(const void *restrict src, void *restrict dest,
ssize_t nbytes);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

symlink, symlinkat

Purpose: Make a symbolic link relative to directory file descriptor.

Synopsis: #include <unistd.h>

int symlink(const char *path1, const char *path2);
int symlinkat(const char *path1, int fd, const char *path2);

The symlinkat() function is equivalent to the symlink() function except in the case
where path2 specifies a relative path. In this case the symbolic link is created
relative to the directory associated with the file descriptor fd instead of the current
working directory. If the file descriptor was opened without O_SEARCH, the
function checks whether directory searches are permitted using the current
permissions of the directory underlying the file descriptor. If the file descriptor was
opened with O_SEARCH, the function does not perform the check.

The purpose of the symlinkat() function is to create symbolic links in directories
other than the current working directory without exposure to race conditions. Any
part of the path of a file could be changed in parallel to a call to symlink(), resulting
in unspecified behavior. By opening a file descriptor for the target directory and
using the symlinkat() function it can be guaranteed that the created symbolic link is

The Authorized Guide to the Single UNIX Specification, Version 4 173

System Interfaces System Interfaces Migration

located relative to the desired directory.

Derivation: First released in Issue 4, Version 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #143 is applied, allowing
implementations to support pathnames longer than {PATH_MAX}.

The symlinkat() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 2.

Additions have been made describing how symlink() sets the user and group IDs
and file mode of the symbolic link, and its effect on timestamps.

sync

Purpose: Schedule file system updates.

Synopsis:XSI #include <unistd.h>

void sync(void);

Derivation: First released in Issue 4, Version 2.

Issue 7: No functional changes are made in this issue.

sysconf

Purpose: Get configurable system variables.

Synopsis: #include <unistd.h>

long sysconf(int name);

Derivation: First released in Issue 3. Included for alignment with the IEEE Std 1003.1-1988
(POSIX.1).

Issue 7: Austin Group Interpretation 1003.1-2001 #160 is applied, clarifying the
requirements related to variables that have no limit.

SD5-XSH-ERN-166 is applied, changing ‘‘Maximum size’’ to ‘‘Initial size’’ for the
‘‘Maximum size of ...’’ entries in the table in the DESCRIPTION.

The variables for the supported programming environments are updated to be V7
and the LEGACY variables are removed.

The following constants are added:

_POSIX_THREAD_ROBUST_PRIO_INHERIT
_POSIX_THREAD_ROBUST_PRIO_PROTECT

The _XOPEN_UUCP variable and its associated _SC_XOPEN_UUCP value is
added to the table of system variables.

174 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

system

Purpose: Issue a command.

Synopsis: #include <stdlib.h>

int system(const char *command);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: Austin Group Interpretation 1003.1-2001 #055 is applied, clarifying the thread-
safety of this function and treatment of pthread_atfork() handlers.

tan, tanf, tanl

Purpose: Tangent function.

Synopsis: #include <math.h>

double tan(double x);
float tanf(float x);
long double tanl(long double x);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

tanh, tanhf, tanhl

Purpose: Hyperbolic tangent functions.

Synopsis: #include <math.h>

double tanh(double x);
float tanhf(float x);
long double tanhl(long double x);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

tcdrain

Purpose: Wait for transmission of output.

Synopsis: #include <termios.h>

int tcdrain(int fildes);

Derivation: First released in Issue 3. Included for alignment with the IEEE Std 1003.1-1988
(POSIX.1).

Issue 7: No functional changes are made in this issue.

tcflow

Purpose: Suspend or restart the transmission or reception of data.

Synopsis: #include <termios.h>

int tcflow(int fildes, int action);

Derivation: First released in Issue 3. Included for alignment with the IEEE Std 1003.1-1988
(POSIX.1).

The Authorized Guide to the Single UNIX Specification, Version 4 175

System Interfaces System Interfaces Migration

Issue 7: SD5-XSH-ERN-190 is applied, clarifying in the DESCRIPTION the transmission of
START and STOP characters.

tcflush

Purpose: Flush non-transmitted output data, non-read input data, or both.

Synopsis: #include <termios.h>

int tcflush(int fildes, int queue_selector);

Derivation: First released in Issue 3. Included for alignment with the IEEE Std 1003.1-1988
(POSIX.1).

Issue 7: No functional changes are made in this issue.

tcgetattr

Purpose: Get the parameters associated with the terminal.

Synopsis: #include <termios.h>

int tcgetattr(int fildes, struct termios *termios_p);

Derivation: First released in Issue 3. Included for alignment with the IEEE Std 1003.1-1988
(POSIX.1).

Issue 7: No functional changes are made in this issue.

tcgetpgrp

Purpose: Get the foreground process group ID.

Synopsis: #include <unistd.h>

pid_t tcgetpgrp(int fildes);

Derivation: First released in Issue 3. Included for alignment with the IEEE Std 1003.1-1988
(POSIX.1).

Issue 7: No functional changes are made in this issue.

tcgetsid

Purpose: Get the process group ID for the session leader for the controlling terminal.

Synopsis: #include <termios.h>

pid_t tcgetsid(int fildes);

Derivation: First released in Issue 4, Version 2.

Issue 7: The tcgetsid() function is moved from the XSI option to the Base.

tcsendbreak

Purpose: Send a break for a specific duration.

Synopsis: #include <termios.h>

int tcsendbreak(int fildes, int duration);

Derivation: First released in Issue 3. Included for alignment with the IEEE Std 1003.1-1988
(POSIX.1).

176 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

Issue 7: No functional changes are made in this issue.

tcsetattr

Purpose: Set the parameters associated with the terminal.

Synopsis: #include <termios.h>

int tcsetattr(int fildes, int optional_actions,
const struct termios *termios_p);

Derivation: First released in Issue 3. Included for alignment with the IEEE Std 1003.1-1988
(POSIX.1).

Issue 7: Austin Group Interpretation 1003.1-2001 #144 is applied, adding requirements
related to the new O_TTY_INIT flag.

tcsetpgrp

Purpose: Set the foreground process group ID.

Synopsis: #include <unistd.h>

int tcsetpgrp(int fildes, pid_t pgid_id);

Derivation: First released in Issue 3. Included for alignment with the IEEE Std 1003.1-1988
(POSIX.1).

Issue 7: No functional changes are made in this issue.

tdelete, tfind, tsearch, twalk

Purpose: Manage a binary search tree.

Synopsis:XSI #include <search.h>

void *tdelete(const void *restrict key, void **restrict rootp,
int(*compar)(const void *, const void *));

void *tfind(const void *key, void *const *rootp,
int(*compar)(const void *, const void *));

void *tsearch(const void *key, void **rootp,
int (*compar)(const void *, const void *));

void twalk(const void *root,
void (*action)(const void *, VISIT, int));

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: Austin Group Interpretation 1003.1-2001 #149 is applied, clarifying concurrent use
of the tree in another thread.

Austin Group Interpretation 1003.1-2001 #151 is applied, clarifying behavior for
tdelete() when the deleted node is the root node.

Austin Group Interpretation 1003.1-2001 #153 is applied, clarifying that if the
functions pointed to by action or compar change the tree, the results are undefined.

The Authorized Guide to the Single UNIX Specification, Version 4 177

System Interfaces System Interfaces Migration

telldir

Purpose: Current location of a named directory stream.

Synopsis:XSI #include <dirent.h>

long telldir(DIR *dirp);

Derivation: First released in Issue 2.

Issue 7: No functional changes are made in this issue.

tempnam

Purpose: Create a name for a temporary file.

Synopsis:OB XSI #include <stdio.h>

char *tempnam(const char *dir, const char *pfx);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: The tempnam() function is marked obsolescent. Applications should use the
tmpfile(), mkdtemp(), or mkstemp() functions instead.

tgamma, tgammaf, tgammal

Purpose: Compute gamma() function.

Synopsis: #include <math.h>

double tgamma(double x);
float tgammaf(float x);
long double tgammal(long double x);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: ISO/IEC 9899: 1999 standard, Technical Corrigendum 2 #52 (SD5-XSH-ERN-85) is
applied.

time

Purpose: Get time.

Synopsis: #include <time.h>

time_t time(time_t *tloc);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

timer_create

Purpose: Create a per-process timer.

Synopsis:CX #include <signal.h>
#include <time.h>

int timer_create(clockid_t clockid,
struct sigevent *restrict evp,
timer_t *restrict timerid);

178 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

Derivation: First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

Issue 7: The timer_create() function is moved from the Timers option to the Base.

timer_delete

Purpose: Delete a per-process timer.

Synopsis:CX #include <time.h>

int timer_delete(timer_t timerid);

Derivation: First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

Issue 7: The timer_delete() function is moved from the Timers option to the Base.

timer_getoverrun, timer_gettime, timer_settime

Purpose: Per-process timers.

Synopsis:CX #include <time.h>

int timer_getoverrun(timer_t timerid);
int timer_gettime(timer_t timerid, struct itimerspec *value);
int timer_settime(timer_t timerid, int flags,

const struct itimerspec *restrict value,
struct itimerspec *restrict ovalue);

Derivation: First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

Issue 7: The timer_getoverrun(), timer_gettime(), and timer_settime() functions are moved
from the Timers option to the Base.

Functionality relating to the Realtime Signals Extension option is moved to the
Base.

times

Purpose: Get process and waited-for child process times.

Synopsis: #include <sys/times.h>

clock_t times(struct tms *buffer);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

The Authorized Guide to the Single UNIX Specification, Version 4 179

System Interfaces System Interfaces Migration

tmpfile

Purpose: Create a temporary file.

Synopsis: #include <stdio.h>

FILE *tmpfile(void);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: Austin Group Interpretation 1003.1-2001 #025 is applied, clarifying that
implementations may restrict the permissions of the file created.

SD5-XBD-ERN-4 is applied, changing the definition of the [EMFILE] error.

SD5-XSH-ERN-149 is applied, adding the mandatory [EMFILE] error condition for
{STREAM_MAX} streams open.

tmpnam

Purpose: Create a name for a temporary file.

Synopsis:OB #include <stdio.h>

char *tmpnam(char *s);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: Austin Group Interpretation 1003.1-2001 #148 is applied, clarifying that the
tmpnam() function need not be thread-safe if called with a NULL parameter.

The tmpnam() function is marked obsolescent. Applications should use the
tmpfile(), mkdtemp(), or mkstemp() functions instead.

toascii

Purpose: Translate an integer to a 7-bit ASCII character.

Synopsis:OB XSI #include <ctype.h>

int toascii(int c);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: The toascii() function is marked obsolescent.

tolower, tolower_l

Purpose: Transliterate uppercase characters to lowercase.

Synopsis: #include <ctype.h>

int tolower(int c);
CX int tolower_l(int c, locale_t locale);

The tolower_l() function is equivalent to the tolower() function, except that the
locale data used is from the locale represented by locale. A handle for use as locale
can be obtained using newlocale() or duplocale().

180 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: The tolower_l() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 4.

toupper, toupper_l

Purpose: Transliterate lowercase characters to uppercase.

Synopsis: #include <ctype.h>

int toupper(int c);
CX int toupper_l(int c, locale_t locale);

The toupper_l() function is equivalent to the toupper() function, except that the
locale data used is from the locale represented by locale. A handle for use as locale
can be obtained using newlocale() or duplocale().

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: The toupper_l() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 4.

towctrans, towctrans_l

Purpose: Wide-character transliteration.

Synopsis: #include <wctype.h>

wint_t towctrans(wint_t wc, wctrans_t desc);
CX wint_t towctrans_l(wint_t wc, wctrans_t desc,

locale_t locale);

The towctrans_l() function is equivalent to the towctrans() function, except that the
locale data used is from the locale represented by locale. A handle for use as locale
can be obtained using newlocale() or duplocale().

Derivation: First released in Issue 5. Derived from .

Issue 7: The towctrans_l() function is added from The Open Group Technical Standard,
2006, Extended API Set Part 4.

towlower, towlower_l

Purpose: Transliterate uppercase wide-character code to lowercase.

Synopsis: #include <wctype.h>

wint_t towlower(wint_t wc);
CX wint_t towlower_l(wint_t wc, locale_t locale);

The towlower_l() function is equivalent to the towlower() function, except that the
locale data used is from the locale represented by locale. A handle for use as locale
can be obtained using newlocale() or duplocale().

Derivation: First released in Issue 4.

The Authorized Guide to the Single UNIX Specification, Version 4 181

System Interfaces System Interfaces Migration

Issue 7: The towlower_l() function is added from The Open Group Technical Standard,
2006, Extended API Set Part 4.

towupper, towupper_l

Purpose: Transliterate lowercase wide-character code to uppercase.

Synopsis: #include <wctype.h>

wint_t towupper(wint_t wc);
CX wint_t towupper_l(wint_t wc, locale_t locale);

The towupper_l() function is equivalent to the towupper() function, except that the
locale data used is from the locale represented by locale. A handle for use as locale
can be obtained using newlocale() or duplocale().

Derivation: First released in Issue 4.

Issue 7: The towupper_l() function is added from The Open Group Technical Standard,
2006, Extended API Set Part 4.

trunc, truncf, truncl

Purpose: Round to truncated integer value.

Synopsis: #include <math.h>

double trunc(double x);
float truncf(float x);
long double truncl(long double x);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

truncate

Purpose: Truncate a file to a specified length.

Synopsis: #include <unistd.h>

int truncate(const char *path, off_t length);

Derivation: First released in Issue 4, Version 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #143 is applied, allowing
implementations to support pathnames longer than {PATH_MAX}.

The truncate() function is moved from the XSI option to the Base.

Changes are made related to support for finegrained timestamps.

The [ENOTDIR] error condition is clarified to cover the condition where the last
component of a pathname exists but is not a directory or a symbolic link to a
directory.

182 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

ttyname, ttyname_r

Purpose: Find the pathname of a terminal.

Synopsis: #include <unistd.h>

char *ttyname(int fildes);
int ttyname_r(int fildes, char *name, size_t namesize);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: SD5-XSH-ERN-100 is applied, correcting the definition of the [ENOTTY] error
condition.

The ttyname_r() function is moved from the Thread-Safe Functions option to the
Base.

daylight, timezone, tzname, tzset

Purpose: Set timezone conversion information.

Synopsis: #include <time.h>

XSI extern int daylight;
extern long timezone;

CX extern char *tzname[2];
void tzset(void);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

ulimit

Purpose: Get and set process limits.

Synopsis:OB XSI #include <ulimit.h>

long ulimit(int cmd, ...);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: The ulimit() function is marked obsolescent. Applications should use the
getrlimit() or setrlimit() functions instead.

umask

Purpose: Set and get the file mode creation mask.

Synopsis: #include <sys/stat.h>

mode_t umask(mode_t cmask);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

The Authorized Guide to the Single UNIX Specification, Version 4 183

System Interfaces System Interfaces Migration

uname

Purpose: Get the name of the current system.

Synopsis: #include <sys/utsname.h>

int uname(struct utsname *name);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

ungetc

Purpose: Push byte back into input stream.

Synopsis: #include <stdio.h>

int ungetc(int c, FILE *stream);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

ungetwc

Purpose: Push wide-character code back into the input stream.

Synopsis: #include <stdio.h>
#include <wchar.h>

wint_t ungetwc(wint_t wc, FILE *stream);

Derivation: First released in Issue 4. Derived from the MSE working draft.

Issue 7: No functional changes are made in this issue.

unlink, unlinkat

Purpose: Remove a directory entry relative to directory file descriptor.

Synopsis: #include <unistd.h>

int unlink(const char *path);
int unlinkat(int fd, const char *path, int flag);

The unlinkat() function is equivalent to the unlink() or rmdir() function except in
the case where path specifies a relative path. In this case the directory entry to be
removed is determined relative to the directory associated with the file descriptor
fd instead of the current working directory. If the file descriptor was opened
without O_SEARCH, the function checks whether directory searches are permitted
using the current permissions of the directory underlying the file descriptor. If the
file descriptor was opened with O_SEARCH, the function does not perform the
check.

The AT_REMOVEDIR flag controls whether unlinkat() behaves like unlink() or
rmdir(): if AT_REMOVEDIR is set, the directory entry specified by fd and path is
removed as a directory.

The purpose of the unlinkat() function is to remove directory entries in directories
other than the current working directory without exposure to race conditions. Any
part of the path of a file could be changed in parallel to a call to unlink(), resulting
in unspecified behavior. By opening a file descriptor for the target directory and

184 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

using the unlinkat() function it can be guaranteed that the removed directory entry
is located relative to the desired directory.

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: Austin Group Interpretation 1003.1-2001 #143 is applied, allowing
implementations to support pathnames longer than {PATH_MAX}.

Austin Group Interpretation 1003.1-2001 #181 is applied, updating the
requirements for operations when the S_ISVTX bit is set on a directory.

Text arising from the LSB Conflicts TR is added to the RATIONALE about the use
of [EPERM] and [EISDIR].

The unlinkat() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 2.

Changes are made related to support for finegrained timestamps.

The [ENOTDIR] error condition is clarified to cover the condition where the last
component of a pathname exists but is not a directory or a symbolic link to a
directory.

unlockpt

Purpose: Unlock a pseudo-terminal master/slave pair.

Synopsis:XSI #include <stdlib.h>

int unlockpt(int fildes);

Derivation: First released in Issue 4, Version 2.

Issue 7: No functional changes are made in this issue.

unsetenv

Purpose: Remove an environment variable.

Synopsis:CX #include <stdlib.h>

int unsetenv(const char *name);

Derivation: First released in Issue 6. Derived from the IEEE P1003.1a draft standard.

Issue 7: No functional changes are made in this issue.

uselocale

Purpose: Use locale in current thread.

Synopsis:CX #include <locale.h>

locale_t uselocale(locale_t newloc);

The uselocale() function sets the current locale for the current thread to the locale
represented by newloc.

Application writers should note that unlike the setlocale() function, the uselocale()
function does not allow replacing some locale categories only. Applications that
need to install a locale which differs only in a few categories must use newlocale()

The Authorized Guide to the Single UNIX Specification, Version 4 185

System Interfaces System Interfaces Migration

to change a locale object equivalent to the currently used locale and install it.

Derivation: First released in Issue 7. Derived from The Open Group Technical Standard, 2006,
Extended API Set Part 4.

Issue 7: First released in Issue 7.

utime

Purpose: Set file access and modification times.

Synopsis:OB #include <utime.h>

int utime(const char *path, const struct utimbuf *times);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: Austin Group Interpretation 1003.1-2001 #143 is applied, allowing
implementations to support pathnames longer than {PATH_MAX}.

The utime() function is marked obsolescent. Applications should use the
utimensat() function instead.

Changes are made related to support for finegrained timestamps.

vdprintf, vfprintf, vprintf, vsnprintf, vsprintf

Purpose: Format output of a stdarg argument list.

Synopsis: #include <stdarg.h>
#include <stdio.h>

CX int vdprintf(int fildes, const char *restrict format,
va_list ap);

int vfprintf(FILE *restrict stream,
const char *restrict format, va_list ap);

int vprintf(const char *restrict format, va_list ap);
int vsnprintf(char *restrict s, size_t n,

const char *restrict format, va_list ap);
int vsprintf(char *restrict s, const char *restrict format,

va_list ap);

The vdprintf() function is equivalent to the vfprintf() function, except that
vdprintf() writes output to the file associated with the file descriptor specified by
the fildes argument rather than placing output on a stream.

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: The vdprintf() function is added to complement the dprintf() function from The
Open Group Technical Standard, 2006, Extended API Set Part 1.

186 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

vfscanf, vscanf, vsscanf

Purpose: Format input of a stdarg argument list.

Synopsis: #include <stdarg.h>
#include <stdio.h>

int vfscanf(FILE *restrict stream, const char *restrict format,
va_list arg);

int vscanf(const char *restrict format, va_list arg);
int vsscanf(const char *restrict s, const char *restrict format,

va_list arg);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

vfwprintf, vswprintf, vwprintf

Purpose: Wide-character formatted output of a stdarg argument list.

Synopsis: #include <stdarg.h>
#include <stdio.h>
#include <wchar.h>

int vfwprintf(FILE *restrict stream,
const wchar_t *restrict format, va_list arg);

int vswprintf(wchar_t *restrict ws, size_t n,
const wchar_t *restrict format, va_list arg);

int vwprintf(const wchar_t *restrict format, va_list arg);

Derivation: First released in Issue 5. Included for alignment with .

Issue 7: No functional changes are made in this issue.

vfwscanf, vswscanf, vwscanf

Purpose: Wide-character formatted input of a stdarg argument list.

Synopsis: #include <stdarg.h>
#include <stdio.h>
#include <wchar.h>

int vfwscanf(FILE *restrict stream,
const wchar_t *restrict format, va_list arg);

int vswscanf(const wchar_t *restrict ws,
const wchar_t *restrict format, va_list arg);

int vwscanf(const wchar_t *restrict format, va_list arg);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

The Authorized Guide to the Single UNIX Specification, Version 4 187

System Interfaces System Interfaces Migration

wait, waitpid

Purpose: Wait for a child process to stop or terminate.

Synopsis: #include <sys/wait.h>

pid_t wait(int *stat_loc);
pid_t waitpid(pid_t pid, int *stat_loc, int options);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: APPLICATION USAGE is added, recommending that the wait() function not be
used and that the waitpid() function not be used with a pid argument of −1.

An additional example for waitpid() is added.

waitid

Purpose: Wait for a child process to change state.

Synopsis: #include <sys/wait.h>

int waitid(idtype_t idtype, id_t id, siginfo_t *infop,
int options);

Derivation: First released in Issue 4, Version 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #060 is applied, updating the
DESCRIPTION to require that applications set at least one of the flags WEXITED,
WSTOPPED or WCONTINUED in the options argument.

The waitid() function is moved from the XSI option to the Base.

APPLICATION USAGE is added, recommending that the waitid() function not be
used with idtype equal to P_ALL.

The description of the WNOHANG flag is updated to match the one on the
<sys/wait.h> page.

wcrtomb

Purpose: Convert a wide-character code to a character (restartable).

Synopsis: #include <stdio.h>

size_t wcrtomb(char *restrict s, wchar_t wc,
mbstate_t *restrict ps);

Derivation: First released in Issue 5. Included for alignment with .

Issue 7: Austin Group Interpretation 1003.1-2001 #148 is applied, clarifying that the
wcrtomb() function need not be thread-safe if called with a NULL ps argument.

Austin Group Interpretation 1003.1-2001 #170 is applied, changing the [EILSEQ]
error condition from a ‘‘may fail’’ to a ‘‘shall fail’’.

188 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

wcscasecmp, wcscasecmp_l, wcsncasecmp, wcsncasecmp_l

Purpose: Case-insensitive wide-character string comparison.

Synopsis:CX #include <wchar.h>

int wcscasecmp(const wchar_t *ws1, const wchar_t *ws2);
int wcscasecmp_l(const wchar_t *ws1, const wchar_t *ws2,

locale_t locale);
int wcsncasecmp(const wchar_t *ws1, const wchar_t *ws2,

size_t n);
int wcsncasecmp_l(const wchar_t *ws1, const wchar_t *ws2,

size_t n, locale_t locale);

The wcscasecmp() and wcsncasecmp() functions are the wide-character equivalent of
the strcasecmp() and strncasecmp() functions, respectively.

The wcscasecmp() and wcscasecmp_l() functions compare, while ignoring
differences in case, the wide-character string pointed to by ws1 to the wide-
character string pointed to by ws2.

The wcsncasecmp() and wcsncasecmp_l() functions compare, while ignoring
differences in case, not more than n wide-characters from the wide-character string
pointed to by ws1 to the wide-character string pointed to by ws2.

Derivation: First released in Issue 7. Derived from The Open Group Technical Standard, 2006,
Extended API Set Part 1.

Issue 7: First released in Issue 7.

wcscat

Purpose: Concatenate two wide-character strings.

Synopsis: #include <wchar.h>

wchar_t *wcscat(wchar_t *restrict ws1,
const wchar_t *restrict ws2);

Derivation: First released in Issue 4. Derived from the MSE working draft.

Issue 7: No functional changes are made in this issue.

wcschr

Purpose: Wide-character string scanning operation.

Synopsis: #include <wchar.h>

wchar_t *wcschr(const wchar_t *ws, wchar_t wc);

Derivation: First released in Issue 4. Derived from the MSE working draft.

Issue 7: No functional changes are made in this issue.

The Authorized Guide to the Single UNIX Specification, Version 4 189

System Interfaces System Interfaces Migration

wcscmp

Purpose: Compare two wide-character strings.

Synopsis: #include <wchar.h>

int wcscmp(const wchar_t *ws1, const wchar_t *ws2);

Derivation: First released in Issue 4. Derived from the MSE working draft.

Issue 7: No functional changes are made in this issue.

wcscoll, wcscoll_l

Purpose: Wide-character string comparison using collating information.

Synopsis: #include <wchar.h>

int wcscoll(const wchar_t *ws1, const wchar_t *ws2);
CX int wcscoll_l(const wchar_t *ws1, const wchar_t *ws2,

locale_t locale);

The wcscoll_l() function compares the wide-character string pointed to by ws1 to
the wide-character string pointed to by ws2, both interpreted as appropriate to the
LC_COLLATE category of the locale represented by locale.

A handle for use as locale can be obtained using newlocale() or duplocale().

Derivation: First released in Issue 4. Derived from the MSE working draft.

Issue 7: The wcscoll_l() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 4.

wcpcpy, wcscpy

Purpose: Copy a wide-character string, returning a pointer to its end.

Synopsis: #include <wchar.h>

CX wchar_t *wcpcpy(wchar_t *restrict ws1,
const wchar_t *restrict ws2);

wchar_t *wcscpy(wchar_t *restrict ws1,
const wchar_t *restrict ws2);

The wcpcpy() function is equivalent to the wcscpy() function, except that it returns
a pointer to the terminating null wide-character code copied into the ws1 buffer.

Derivation: First released in Issue 4. Derived from the MSE working draft.

Issue 7: The wcpcpy() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 1.

wcscspn

Purpose: Get the length of a complementary wide substring.

Synopsis: #include <wchar.h>

size_t wcscspn(const wchar_t *ws1, const wchar_t *ws2);

Derivation: First released in Issue 4. Derived from the MSE working draft.

190 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

Issue 7: No functional changes are made in this issue.

wcsdup

Purpose: Duplicate a wide-character string.

Synopsis:CX #include <wchar.h>

wchar_t *wcsdup(const wchar_t *string);

The wcsdup() function is the wide-character equivalent of the strdup() function.

Application writers should note that for functions that allocate memory as if by
malloc(), (such as wcsdup()) the application should release such memory when it is
no longer required by a call to free(). For wcsdup(), this is the return value.

Derivation: First released in Issue 7. Derived from The Open Group Technical Standard, 2006,
Extended API Set Part 1.

Issue 7: First released in Issue 7.

wcsftime

Purpose: Convert date and time to a wide-character string.

Synopsis: #include <wchar.h>

size_t wcsftime(wchar_t *restrict wcs, size_t maxsize,
const wchar_t *restrict format,
const struct tm *restrict timeptr);

Derivation: First released in Issue 4.

Issue 7: No functional changes are made in this issue.

wcslen, wcsnlen

Purpose: Get length of a fixed-sized wide-character string.

Synopsis: #include <wchar.h>

size_t wcslen(const wchar_t *ws);
CX size_t wcsnlen(const wchar_t *ws, size_t maxlen);

The wcsnlen() function computes the smaller of the number of wide characters in
the string to which ws points, not including the terminating null wide-character
code, and the value of maxlen. The wcsnlen() function never examines more than
the first maxlen characters of the wide-character string pointed to by ws.

Derivation: First released in Issue 4. Derived from the MSE working draft.

Issue 7: The wcsnlen() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 1.

The Authorized Guide to the Single UNIX Specification, Version 4 191

System Interfaces System Interfaces Migration

wcsncat

Purpose: Concatenate a wide-character string with part of another.

Synopsis: #include <wchar.h>

wchar_t *wcsncat(wchar_t *restrict ws1,
const wchar_t *restrict ws2, size_t n);

Derivation: First released in Issue 4. Derived from the MSE working draft.

Issue 7: No functional changes are made in this issue.

wcsncmp

Purpose: Compare part of two wide-character strings.

Synopsis: #include <wchar.h>

int wcsncmp(const wchar_t *ws1, const wchar_t *ws2, size_t n);

Derivation: First released in Issue 4. Derived from the MSE working draft.

Issue 7: No functional changes are made in this issue.

wcpncpy, wcsncpy

Purpose: Copy a fixed-size wide-character string, returning a pointer to its end.

Synopsis: #include <wchar.h>

CX wchar_t *wcpncpy(wchar_t restrict *ws1,
const wchar_t *restrict ws2, size_t n);

wchar_t *wcsncpy(wchar_t *restrict ws1,
const wchar_t *restrict ws2, size_t n);

The wcpncpy() function is equivalent to the wcsncpy() function, except for the
return value. If any null wide-character codes were written into the destination,
the wcpncpy() function returns the address of the first such null wide-character
code. Otherwise, it returns &ws1[n].

Derivation: First released in Issue 4. Derived from the MSE working draft.

Issue 7: The wcpncpy() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 1.

wcspbrk

Purpose: Scan a wide-character string for a wide-character code.

Synopsis: #include <wchar.h>

wchar_t *wcspbrk(const wchar_t *ws1, const wchar_t *ws2);

Derivation: First released in Issue 4. Derived from the MSE working draft.

Issue 7: No functional changes are made in this issue.

192 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

wcsrchr

Purpose: Wide-character string scanning operation.

Synopsis: #include <wchar.h>

wchar_t *wcsrchr(const wchar_t *ws, wchar_t wc);

Derivation: First released in Issue 4. Derived from the MSE working draft.

Issue 7: No functional changes are made in this issue.

wcsnrtombs, wcsrtombs

Purpose: Convert a wide-character string to a character string (restartable).

Synopsis: #include <wchar.h>

CX size_t wcsnrtombs(char *restrict dst,
const wchar_t **restrict src, size_t nwc,
size_t len, mbstate_t *restrict ps);

size_t wcsrtombs(char *restrict dst,
const wchar_t **restrict src, size_t len,
mbstate_t *restrict ps);

The wcsnrtombs() function is equivalent to the wcsrtombs() function, except that the
conversion is limited to the first nwc wide characters.

Derivation: First released in Issue 5. Included for alignment with .

Issue 7: Austin Group Interpretation 1003.1-2001 #148 is applied, clarifying that the
wcsrtombs() function need not be thread-safe if called with a NULL ps argument.

Austin Group Interpretation 1003.1-2001 #170 is applied, changing the [EILSEQ]
error condition from a ‘‘may fail’’ to a ‘‘shall fail’’.

The wcnsrtombs() function is added from The Open Group Technical Standard,
2006, Extended API Set Part 1.

wcsspn

Purpose: Get the length of a wide substring.

Synopsis: #include <wchar.h>

size_t wcsspn(const wchar_t *ws1, const wchar_t *ws2);

Derivation: First released in Issue 4. Derived from the MSE working draft.

Issue 7: No functional changes are made in this issue.

wcsstr

Purpose: Find a wide-character substring.

Synopsis: #include <wchar.h>

wchar_t *wcsstr(const wchar_t *restrict ws1,
const wchar_t *restrict ws2);

Derivation: First released in Issue 5. Included for alignment with .

The Authorized Guide to the Single UNIX Specification, Version 4 193

System Interfaces System Interfaces Migration

Issue 7: No functional changes are made in this issue.

wcstod, wcstof, wcstold

Purpose: Convert a wide-character string to a double-precision number.

Synopsis: #include <wchar.h>

double wcstod(const wchar_t *restrict nptr,
wchar_t **restrict endptr);

float wcstof(const wchar_t *restrict nptr,
wchar_t **restrict endptr);

long double wcstold(const wchar_t *restrict nptr,
wchar_t **restrict endptr);

Derivation: First released in Issue 4. Derived from the MSE working draft.

Issue 7: No functional changes are made in this issue.

wcstoimax, wcstoumax

Purpose: Convert a wide-character string to an integer type.

Synopsis: #include <stddef.h>
#include <inttypes.h>

intmax_t wcstoimax(const wchar_t *restrict nptr,
wchar_t **restrict endptr, int base);

uintmax_t wcstoumax(const wchar_t *restrict nptr,
wchar_t **restrict endptr, int base);

Derivation: First released in Issue 6. Derived from the ISO/IEC 9899: 1999 standard.

Issue 7: No functional changes are made in this issue.

wcstok

Purpose: Split a wide-character string into tokens.

Synopsis: #include <wchar.h>

wchar_t *wcstok(wchar_t *restrict ws1,
const wchar_t *restrict ws2,
wchar_t **restrict ptr);

Derivation: First released in Issue 4.

Issue 7: No functional changes are made in this issue.

wcstol, wcstoll

Purpose: Convert a wide-character string to a long integer.

Synopsis: #include <wchar.h>

long wcstol(const wchar_t *restrict nptr,
wchar_t **restrict endptr, int base);

long long wcstoll(const wchar_t *restrict nptr,
wchar_t **restrict endptr, int base);

194 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

Derivation: First released in Issue 4. Derived from the MSE working draft.

Issue 7: No functional changes are made in this issue.

wcstombs

Purpose: Convert a wide-character string to a character string.

Synopsis: #include <stdlib.h>

size_t wcstombs(char *restrict s,
const wchar_t *restrict pwcs, size_t n);

Derivation: First released in Issue 4. Derived from the IEEE Std 1003.1i-1995.

Issue 7: Austin Group Interpretation 1003.1-2001 #170 is applied, changing the [EILSEQ]
error condition from a ‘‘may fail’’ to a ‘‘shall fail’’.

wcstoul, wcstoull

Purpose: Convert a wide-character string to an unsigned long.

Synopsis: #include <wchar.h>

unsigned long wcstoul(const wchar_t *restrict nptr,
wchar_t **restrict endptr, int base);

unsigned long long wcstoull(const wchar_t *restrict nptr,
wchar_t **restrict endptr, int base);

Derivation: First released in Issue 4. Derived from the MSE working draft.

Issue 7: No functional changes are made in this issue.

wcswidth

Purpose: Number of column positions of a wide-character string.

Synopsis:XSI #include <wchar.h>

int wcswidth(const wchar_t *pwcs, size_t n);

Derivation: First released in Issue 4. Derived from the MSE working draft.

Issue 7: No functional changes are made in this issue.

wcsxfrm, wcsxfrm_l

Purpose: Wide-character string transformation.

Synopsis: #include <wchar.h>

size_t wcsxfrm(wchar_t *restrict ws1,
const wchar_t *restrict ws2, size_t n);

CX size_t wcsxfrm_l(wchar_t *restrict ws1,
const wchar_t *restrict ws2, size_t n,
locale_t locale);

The wcsxfrm_l() function is equivalent to the wcsxfrm() function, except that the
locale data used is from the locale represented by locale. A handle for use as locale
can be obtained using newlocale() or duplocale().

The Authorized Guide to the Single UNIX Specification, Version 4 195

System Interfaces System Interfaces Migration

Derivation: First released in Issue 4. Derived from the MSE working draft.

Issue 7: The wcsxfrm_l() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 4.

wctob

Purpose: Wide-character to single-byte conversion.

Synopsis: #include <stdio.h>
#include <wchar.h>

int wctob(wint_t c);

Derivation: First released in Issue 5. Included for alignment with .

Issue 7: No functional changes are made in this issue.

wctomb

Purpose: Convert a wide-character code to a character.

Synopsis: #include <stdlib.h>

int wctomb(char *s, wchar_t wchar);

Derivation: First released in Issue 4. Derived from the IEEE Std 1003.1b-1993.

Issue 7: Austin Group Interpretation 1003.1-2001 #170 is applied, adding the [EILSEQ]
error condition.

wctrans, wctrans_l

Purpose: Define character mapping.

Synopsis: #include <wctype.h>

wctrans_t wctrans(const char *charclass);
CX wctrans_t wctrans_l(const char *charclass, locale_t locale);

The wctrans_l() function is equivalent to the wctrans() function, except that the
locale data used is from the locale represented by locale. A handle for use as locale
can be obtained using newlocale() or duplocale().

Derivation: First released in Issue 5. Derived from .

Issue 7: The wctrans_l() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 4.

wctype, wctype_l

Purpose: Define character class.

Synopsis: #include <wctype.h>

wctype_t wctype(const char *property);
CX wctype_t wctype_l(const char *property, locale_t locale);

The wctype_l() function is equivalent to the wctype() function, except that the
locale data used is from the locale represented by locale. A handle for use as locale
can be obtained using newlocale() or duplocale().

196 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

Derivation: First released in Issue 4.

Issue 7: The wctype_l() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 4.

wcwidth

Purpose: Number of column positions of a wide-character code.

Synopsis:XSI #include <wchar.h>

int wcwidth(wchar_t wc);

Derivation: First released as a World-wide Portability Interface in Issue 4. Derived from the
MSE working draft.

Issue 7: No functional changes are made in this issue.

wmemchr

Purpose: Find a wide character in memory.

Synopsis: #include <wchar.h>

wchar_t *wmemchr(const wchar_t *ws, wchar_t wc, size_t n);

Derivation: First released in Issue 5. Included for alignment with .

Issue 7: No functional changes are made in this issue.

wmemcmp

Purpose: Compare wide characters in memory.

Synopsis: #include <wchar.h>

int wmemcmp(const wchar_t *ws1, const wchar_t *ws2, size_t n);

Derivation: First released in Issue 5. Included for alignment with .

Issue 7: No functional changes are made in this issue.

wmemcpy

Purpose: Copy wide characters in memory.

Synopsis: #include <wchar.h>

wchar_t *wmemcpy(wchar_t *restrict ws1,
const wchar_t *restrict ws2, size_t n);

Derivation: First released in Issue 5. Included for alignment with .

Issue 7: No functional changes are made in this issue.

The Authorized Guide to the Single UNIX Specification, Version 4 197

System Interfaces System Interfaces Migration

wmemmove

Purpose: Copy wide characters in memory with overlapping areas.

Synopsis: #include <wchar.h>

wchar_t *wmemmove(wchar_t *ws1, const wchar_t *ws2, size_t n);

Derivation: First released in Issue 5. Included for alignment with .

Issue 7: No functional changes are made in this issue.

wmemset

Purpose: Set wide characters in memory.

Synopsis: #include <wchar.h>

wchar_t *wmemset(wchar_t *ws, wchar_t wc, size_t n);

Derivation: First released in Issue 5. Included for alignment with .

Issue 7: No functional changes are made in this issue.

wordexp, wordfree

Purpose: Perform word expansions.

Synopsis: #include <wordexp.h>

int wordexp(const char *restrict words,
wordexp_t *restrict pwordexp, int flags);

void wordfree(wordexp_t *pwordexp);

Derivation: First released in Issue 4. Derived from the .

Issue 7: Austin Group Interpretation 1003.1-2001 #148 is applied, adding APPLICATION
USAGE explaining that the wordexp() function need not be thread safe if passed an
expression referencing an environment variable while any other thread is
concurrently modifying any environment variable.

pwrite, write

Purpose: Write on a file.

Synopsis: #include <unistd.h>

ssize_t pwrite(int fildes, const void *buf, size_t nbyte,
off_t offset);

ssize_t write(int fildes, const void *buf, size_t nbyte);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: The pwrite() function is moved from the XSI option to the Base.

Functionality relating to the XSI STREAMS option is marked obsolescent.

SD5-XSH-ERN-160 is applied, updating the DESCRIPTION to clarify the
requirements for the pwrite() function, and to change the use of the phrase ‘‘file
pointer ’’ to ‘‘file offset’’.

198 A Source Book from The Open Group (2010)

System Interfaces Migration System Interfaces

writev

Purpose: Write a vector.

Synopsis:XSI #include <sys/uio.h>

ssize_t writev(int fildes, const struct iovec *iov,
int iovcnt);

Derivation: First released in Issue 4, Version 2.

Issue 7: No functional changes are made in this issue.

y0, y1, yn

Purpose: Bessel functions of the second kind.

Synopsis:XSI #include <math.h>

double y0(double x);
double y1(double x);
double yn(int n, double x);

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

The Authorized Guide to the Single UNIX Specification, Version 4 199

System Interfaces Migration

200 A Source Book from The Open Group (2010)

Chapter 12

Utilities Migration

12.1 Introduction

This chapter contains a section for each utility interface defined in XCU, Issue 7. Each section
contains the SYNOPSIS and gives the derivation of the interface. Where new option letters have
been added in Issue 7, a brief description is included, complete with examples where
appropriate. For interfaces carried forward from Issue 6, syntax and semantic changes made to
the interface in Issue 7 are identified (if any). Only changes that might affect an application
programmer are included.

12.2 Utilities

admin

Purpose: Create and administer SCCS files (DEVELOPMENT).

Synopsis:XSI admin −i[name] [−n] [−a login] [−d flag] [−e login] [−f flag]
[−m mrlist] [−r rel] [−t[name] [−y[comment]] newfile

admin −n [−a login] [−d flag] [−e login] [−f flag] [−m mrlist]
[−t[name]] [−y[comment]] newfile...

admin [−a login] [−d flag] [−m mrlist] [−r rel]
[−t[name]] file...

admin −h file...

admin −z file...

Derivation: First released in Issue 2.

Issue 7: No functional changes are made in this issue.

alias

Purpose: Define or display aliases.

Synopsis: alias [alias-name[=string]...]

Derivation: First released in Issue 4.

Issue 7: The alias utility is moved from the User Portability Utilities option to the Base.
User Portability Utilities is now an option for interactive utilities.

The first example is changed to remove the creation of an alias for a standard
utility that alters its behavior to be non-conforming.

The Authorized Guide to the Single UNIX Specification, Version 4 201

Utilities Utilities Migration

ar

Purpose: Create and maintain library archives.

Synopsis:SD ar −d [−v] archive file...

XSI ar −m [−v] archive file...
ar −m −a [−v] posname archive file...
ar −m −b [−v] posname archive file...
ar −m −i [−v] posname archive file...

XSI ar −p [−v] [−s] archive [file...]

XSI ar −q [−cv] archive file...

ar −r [−cuv] archive file...

XSI ar −r −a [−cuv] posname archive file...
ar −r −b [−cuv] posname archive file...
ar −r −i [−cuv] posname archive file...

XSI ar −t [−v] [−s] archive [file...]

XSI ar −x [−v] [−sCT] archive [file...]

Derivation: First released in Issue 2.

Issue 7: SD5-XCU-ERN-6 is applied, clarifying that Guideline 9 of the Utility Syntax
Guidelines does not apply (options can be interspersed with operands).

asa

Purpose: Interpret carriage-control characters.

Synopsis:FR asa [file...]

Derivation: First released in Issue 4.

Issue 7: Austin Group Interpretation 1003.1-2001 #092 is applied, changing the STDIN
section to reflect that standard input is also used if a file operand is ’−’ and the
implementation treats the ’−’ as meaning standard input.

at

Purpose: Execute commands at a later time.

Synopsis: at [−m] [−f file] [−q queuename] −t time_arg

at [−m] [−f file] [−q queuename] timespec...

at −r at_job_id...

at −l −q queuename

at −l [at_job_id...]

Derivation: First released in Issue 2.

202 A Source Book from The Open Group (2010)

Utilities Migration Utilities

Issue 7: The at utility is moved from the User Portability Utilities option to the Base. User
Portability Utilities is now an option for interactive utilities.

SD5-XCU-ERN-95 is applied, removing the references to fixed locations for the
files referenced by the at utility.

awk

Purpose: Pattern scanning and processing language.

Synopsis: awk [−F ERE] [−v assignment]... program [argument...]

awk [−F ERE] −f progfile [−f progfile]... [−v assignment]...
[argument...]

Derivation: First released in Issue 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #189 is applied, changing the EXTENDED
DESCRIPTION to make the support of hexadecimal integer and floating constants
optional.

Austin Group Interpretation 1003.1-2001 #201 is applied, permitting
implementations to support infinities and NaNs.

SD5-XCU-ERN-79 is applied, restoring the horizontal lines to XCU Table 4-1,
Expressions in Decreasing Precedence in awk, and SD5-XCU-ERN-80 is applied,
changing the order of some table entries.

basename

Purpose: Return non-directory portion of a pathname.

Synopsis: basename string [suffix]

Derivation: First released in Issue 2.

Issue 7: No functional changes are made in this issue.

batch

Purpose: Schedule commands to be executed in a batch queue.

Synopsis: batch

Derivation: First released in Issue 2.

Issue 7: The batch utility is moved from the User Portability Utilities option to the Base.
User Portability Utilities is now an option for interactive utilities.

SD5-XCU-ERN-95 is applied, removing the references to fixed locations for the
files referenced by the batch utility.

bc

Purpose: Arbitrary-precision arithmetic language.

Synopsis: bc [−l] [file...]

Derivation: First released in Issue 4.

Issue 7: No functional changes are made in this issue.

The Authorized Guide to the Single UNIX Specification, Version 4 203

Utilities Utilities Migration

bg

Purpose: Run jobs in the background.

Synopsis:UP bg [job_id...]

Derivation: First released in Issue 4.

Issue 7: No functional changes are made in this issue.

c99

Purpose: Compile standard C programs.

Synopsis:CD c99 [options...] pathname [[pathname] [−I directory]
[−L directory] [−l library]]...

Derivation: First released in Issue 6. Included for alignment with the ISO/IEC 9899: 1999
standard.

Issue 7: Austin Group Interpretation 1003.1-2001 #020 (SD5-XCU-ERN-10) is applied,
adding a statement to the OUTPUT FILES section about unspecified behavior
when the pathname of an object file or executable file to be created by c99 resolves
to an existing directory entry for a file that is not a regular file.

Austin Group Interpretation 1003.1-2001 #166 is applied, adding information about
the use of getconf to obtain c99 arguments used for the threaded programming
environment.

Austin Group Interpretation 1003.1-2001 #190 is applied, clarifying the handling of
trailing white-space characters.

Austin Group Interpretation 1003.1-2001 #191 is applied, adding APPLICATION
USAGE and RATIONALE regarding C-language trigraphs.

SD5-XCU-ERN-6 is applied, clarifying that Guideline 9 of the Utility Syntax
Guidelines does not apply (options can be interspersed with operands).

SD5-XCU-ERN-11 is applied, adding the <net/if.h> header to the descriptions of
−l c and −l xnet.

SD5-XCU-ERN-65 is applied, updating the EXAMPLES section.

The getconf variables for the supported programming environments are updated to
be V7.

The −l trace library is marked obsolescent.

The c99 reference page is rewritten to describe −l as an option rather than an
operand.

204 A Source Book from The Open Group (2010)

Utilities Migration Utilities

cal

Purpose: Print a calendar.

Synopsis:XSI cal [[month] year]

Derivation: First released in Issue 2.

Issue 7: No functional changes are made in this issue.

cat

Purpose: Concatenate and print files.

Synopsis: cat [−u] [file...]

Derivation: First released in Issue 2.

Issue 7: SD5-XCU-ERN-174 is applied, changing the RATIONALE concerning an
alternative to the historical cat −etv.

cd

Purpose: Change the working directory.

Synopsis: cd [−L|−P] [directory]

cd −

Derivation: First released in Issue 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #037 is applied, updating steps 6 through
10 of the processing performed by cd to correct a number of defects.

Austin Group Interpretation 1003.1-2001 #199 is applied, clarifying how the cd
utility handles concatenation of two pathnames when the first pathname ends in a
slash character.

Step 7 of the processing performed by cd is revised to refer to curpath instead of
‘‘the operand’’.

The description of how the cd utility sets the PWD environment variable has been
changed to refer to the output of the pwd utility.

cflow

Purpose: Generate a C-language flowgraph (DEVELOPMENT).

Synopsis:XSI cflow [−r] [−d num] [−D name[=def]]... [−i incl] [−I dir]...
[−U dir]... file...

Derivation: First released in Issue 2.

Issue 7: No functional changes are made in this issue.

The Authorized Guide to the Single UNIX Specification, Version 4 205

Utilities Utilities Migration

chgrp

Purpose: Change the file group ownership.

Synopsis: chgrp [−h] group file...

chgrp −R [−H|−L|−P] group file...

Derivation: First released in Issue 2.

Issue 7: SD5-XCU-ERN-8 is applied, removing the −R from the first line of the SYNOPSIS.

chmod

Purpose: Change the file modes.

Synopsis: chmod [−R] mode file...

Derivation: First released in Issue 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #130 is applied, adding text to the
DESCRIPTION about marking for update the last file status change timestamp of
the file.

chown

Purpose: Change the file ownership.

Synopsis: chown [−h] owner[:group] file...

chown −R [−H|−L|−P] owner[:group] file...

Derivation: First released in Issue 2.

Issue 7: SD5-XCU-ERN-9 is applied, removing the −R from the first line of the SYNOPSIS.

The description of the −h and −P options is revised.

cksum

Purpose: Write file checksums and sizes.

Synopsis: cksum [file...]

Derivation: First released in Issue 4.

Issue 7: Austin Group Interpretation 1003.1-2001 #092 is applied, changing the STDIN
section to reflect that standard input is also used if a file operand is ’−’ and the
implementation treats the ’−’ as meaning standard input.

cmp

Purpose: Compare two files.

Synopsis: cmp [−l|−s] file1 file2

Derivation: First released in Issue 2.

Issue 7: SD5-XCU-ERN-96 is applied, updating the STDERR section to specify the output
when the −l option is used.

206 A Source Book from The Open Group (2010)

Utilities Migration Utilities

comm

Purpose: Select or reject lines common to two files.

Synopsis: comm [−123] file1 file2

Derivation: First released in Issue 2.

Issue 7: No functional changes are made in this issue.

command

Purpose: Execute a simple command.

Synopsis: command [−p] command_name [argument...]

command [−p][−v|−V] command_name

Derivation: First released in Issue 4.

Issue 7: Austin Group Interpretation 1003.1-2001 #196 is applied, changing the SYNOPSIS
to allow −p to be used with −v (or −V).

The command utility is moved from the User Portability Utilities option to the Base.
User Portability Utilities is now an option for interactive utilities.

The APPLICATION USAGE and EXAMPLES are revised to replace the non-
standard getconf _CS_PATH with getconf PA TH.

compress

Purpose: Compress data.

Synopsis:XSI compress [−fv] [−b bits] [file...]

compress [−cfv] [−b bits] [file]

Derivation: First released in Issue 4.

Issue 7: Austin Group Interpretation 1003.1-2001 #125 is applied, revising the
ENVIRONMENT VARIABLES section in relation to locale usage.

cp

Purpose: Copy files.

Synopsis: cp [−Pfip] source_file target_file

cp [−Pfip] source_file... target

cp −R [−H|−L|−P] [−fip] source_file... target

Derivation: First released in Issue 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #092 is applied, specifying that a
source_file or target_file operand of ’−’ shall refer to a file named ’−’;
implementations shall not treat them as meaning standard input or standard
output.

Austin Group Interpretation 1003.1-2001 #164 is applied, making the behavior
unspecified when cp encounters an existing dest_file that was written by a previous
step.

Austin Group Interpretation 1003.1-2001 #165 is applied, correcting the description

The Authorized Guide to the Single UNIX Specification, Version 4 207

Utilities Utilities Migration

of the −i option to reflect that prompts are not written for existing directory files
(only non-directory files), as per the detailed steps in the DESCRIPTION.

Austin Group Interpretation 1003.1-2001 #168 is applied, updating the description
of how two pathnames are concatenated so that a slash character is only inserted if
the first pathname does not end in a slash.

The obsolescent −r option is removed.

The −P option is added to the SYNOPSIS and to the DESCRIPTION with respect to
its use without the −R option.

crontab

Purpose: Schedule periodic background work.

Synopsis: crontab [file]

UP crontab [−e|−l|−r]

Derivation: First released in Issue 2.

Issue 7: The crontab utility (except for the −e option) is moved from the User Portability
Utilities option to the Base. User Portability Utilities is now an option for
interactive utilities.

SD5-XCU-ERN-95 is applied, removing the references to fixed locations for the
files referenced by the crontab utility.

The first example is changed to remove the unreliable use of find | xargs.

csplit

Purpose: Split files based on context.

Synopsis: csplit [−ks] [−f prefix] [−n number] file arg...

Derivation: First released in Issue 2.

Issue 7: The csplit utility is moved from the User Portability Utilities option to the Base.
User Portability Utilities is now an option for interactive utilities.

The SYNOPSIS and OPERANDS sections are revised to clarify that use of a single
arg operand is permitted.

ctags

Purpose: Create a tags file (DEVELOPMENT, FORTRAN).

Synopsis:SD ctags [−a] [−f tagsfile] pathname...

ctags −x pathname...

Derivation: First released in Issue 4.

Issue 7: The ctags utility is no longer dependent on support for the User Portability Utilities
option.

208 A Source Book from The Open Group (2010)

Utilities Migration Utilities

cut

Purpose: Cut out selected fields of each line of a file.

Synopsis: cut −b list [−n] [file...]

cut −c list [file...]

cut −f list [−d delim] [−s] [file...]

Derivation: First released in Issue 2.

Issue 7: SD5-XCU-ERN-171 is applied, adding APPLICATION USAGE regarding the use
of the cut and fold utilities to create text files out of files with arbitrary line lengths.

cxref

Purpose: Generate a C-language program cross-reference table (DEVELOPMENT).

Synopsis:XSI cxref [−cs] [−o file] [−w num] [−D name[=def]]... [−I dir]...
[−U name]... file...

Derivation: First released in Issue 2.

Issue 7: No functional changes are made in this issue.

date

Purpose: Write the date and time.

Synopsis: date [−u] [+format]

XSI date [−u] mmddhhmm[[cc]yy]

Derivation: First released in Issue 2.

Issue 7: No functional changes are made in this issue.

dd

Purpose: Convert and copy a file.

Synopsis: dd [operand...]

Derivation: First released in Issue 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #102 is applied, adding requirements for
the output file to be extended when the input file is empty, seek=expr is specified
but conv=notrunc is not, and either the size of the seek is greater than the previous
size of the output file or the output file did not previously exist.

delta

Purpose: Make a delta (change) to an SCCS file (DEVELOPMENT).

Synopsis:XSI delta [−nps] [−g list] [−m mrlist] [−r SID]
[−y[comment]] file...

Derivation: First released in Issue 2.

The Authorized Guide to the Single UNIX Specification, Version 4 209

Utilities Utilities Migration

Issue 7: No functional changes are made in this issue.

df

Purpose: Report free disk space.

Synopsis:XSI df [−k] [−P|−t] [file...]

Derivation: First released in Issue 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #099 is applied, clarifying the XSI
requirements for operands which name a special file containing a file system.

The df utility is removed from the User Portability Utilities option. User Portability
Utilities is now an option for interactive utilities.

diff

Purpose: Compare two files.

Synopsis: diff [−c|−e|−f|−u|−C n|−U n] [−br] file1 file2

When the −u option is specified, diff produces output in a form that provides three
lines of unified context.

When the −U n option is specified, diff produces output in a form that provides n
lines of unified context.

The −u or −U options behave like the −c or −C options, except that the context lines
are not repeated; instead, the context, deleted, and added lines are shown together,
interleaved.

Derivation: First released in Issue 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #114 is applied, requiring diff to detect
infinite loops in the file system when the −r option is specified.

Austin Group Interpretation 1003.1-2001 #115 is applied, updating requirements
when block or character special files are encountered in directories being
compared.

Austin Group Interpretation 1003.1-2001 #192 is applied, clarifying the behavior if
one or both files are non-text files.

SD5-XCU-ERN-103 and SD5-XCU-ERN-120 are applied, adding the −u and −U
options.

dirname

Purpose: Return the directory portion of a pathname.

Synopsis: dirname string

Derivation: First released in Issue 2.

Issue 7: No functional changes are made in this issue.

210 A Source Book from The Open Group (2010)

Utilities Migration Utilities

du

Purpose: Estimate file space usage.

Synopsis: du [−a|−s] [−kx] [−H|−L] [file...]

Derivation: First released in Issue 2.

Issue 7: The du utility is moved from the User Portability Utilities option to the Base. User
Portability Utilities is now an option for interactive utilities.

echo

Purpose: Write arguments to standard output.

Synopsis: echo [string...]

Derivation: First released in Issue 2.

Issue 7: No functional changes are made in this issue.

ed

Purpose: Edit text.

Synopsis: ed [−p string] [−s] [file]

Derivation: First released in Issue 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #027 is applied, clarifying the behavior if
an operand is ’−’.

Austin Group Interpretation 1003.1-2001 #036 is applied, clarifying the behavior
for BRE back-references when a subexpression does not participate in the match.

SD5-XCU-ERN-94 is applied, updating text in the EXTENDED DESCRIPTION
where a terminal disconnect is detected (in Commands in ed).

env

Purpose: Set the environment for command invocation.

Synopsis: env [−i] [name=value]... [utility [argument...]]

Derivation: First released in Issue 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #027 is applied, clarifying the behavior if
the first argument is ’−’.

Austin Group Interpretation 1003.1-2001 #047 is applied, providing RATIONALE
on how to use the env utility to preserve a conforming environment.

The EXAMPLES section is revised to change the use of env −i so that it preserves a
conforming environment.

The Authorized Guide to the Single UNIX Specification, Version 4 211

Utilities Utilities Migration

ex

Purpose: Text editor.

Synopsis:UP ex [−rR] [−s|−v] [−c command] [−t tagstring]
[−w size] [file...]

Derivation: First released in Issue 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #027 is applied, clarifying the behavior if
an operand is ’−’.

Austin Group Interpretation 1003.1-2001 #036 is applied, clarifying the behavior
for BRE back-references when a subexpression does not participate in the match.

expand

Purpose: Convert tabs to spaces.

Synopsis: expand [−t tablist] [file...]

Derivation: First released in Issue 4.

Issue 7: The expand utility is moved from the User Portability Utilities option to the Base.
User Portability Utilities is now an option for interactive utilities.

expr

Purpose: Evaluate arguments as an expression.

Synopsis: expr operand...

Derivation: First released in Issue 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #036 is applied, clarifying the behavior
for BRE back-references when a subexpression does not participate in the match.

false

Purpose: Return false value.

Synopsis: false

Derivation: First released in Issue 2.

Issue 7: No functional changes are made in this issue.

fc

Purpose: Process the command history list.

Synopsis:UP fc [−r] [−e editor] [first [last]]

fc −l [−nr] [first [last]]

fc −s [old=new] [first]

Derivation: First released in Issue 4.

Issue 7: No functional changes are made in this issue.

212 A Source Book from The Open Group (2010)

Utilities Migration Utilities

fg

Purpose: Run jobs in the foreground.

Synopsis:UP fg [job_id]

Derivation: First released in Issue 4.

Issue 7: No functional changes are made in this issue.

file

Purpose: Determine file type.

Synopsis: file [−dh] [−M file] [−m file] file...

file −i [−h] file...

Derivation: First released in Issue 4.

Issue 7: Austin Group Interpretation 1003.1-2001 #092 is applied, changing the STDIN
section to reflect that standard input is used if a file operand is ’−’ and the
implementation treats the ’−’ as meaning standard input.

SD5-XCU-ERN-4 is applied, adding further entries in the Notes column in XCU
Table 4-9, File Utility Output Strings .

The file utility is moved from the User Portability Utilities option to the Base. User
Portability Utilities is now an option for interactive utilities.

The EXAMPLES section is revised to make use of the "− −" delimiter.

find

Purpose: Find files.

Synopsis: find [−H|−L] path... [operand_expression...]

Derivation: First released in Issue 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #127 is applied, rephrasing the
description of the −exec primary to be ‘‘immediately follows’’.

Austin Group Interpretation 1003.1-2001 #185 is applied, clarifying the
requirements for the −H and −L options.

Austin Group Interpretation 1003.1-2001 #186 is applied, clarifying the
requirements for the evaluation of path operands with trailing slashes.

Austin Group Interpretation 1003.1-2001 #195 is applied, clarifying the
interpretation of the first operand.

SD5-XCU-ERN-48 is applied, clarifying the −L option in the case that the file
referenced by a symbolic link does not exist.

SD5-XCU-ERN-117 is applied, clarifying the −perm primary.

SD5-XCU-ERN-122 is applied, adding a new EXAMPLE showing the useful
technique:

-exec sh -c ’... "$@" ...’ sh {} +

The description of the −name primary is revised and the −path primary is added
(with a new example).

The Authorized Guide to the Single UNIX Specification, Version 4 213

Utilities Utilities Migration

fold

Purpose: Filter for folding lines.

Synopsis: fold [−bs] [−w width] [file...]

Derivation: First released in Issue 4.

Issue 7: Austin Group Interpretation 1003.1-2001 #092 is applied, changing the STDIN
section to reflect that standard input is also used if a file operand is ’−’ and the
implementation treats the ’−’ as meaning standard input.

Austin Group Interpretation 1003.1-2001 #204 is applied, updating the
DESCRIPTION to clarify when a <newline> can be inserted before or after a
<backspace>.

fort77

Purpose: FORTRAN compiler (FORTRAN).

Synopsis:FD fort77 [−c] [−g] [−L directory]... [−O optlevel] [−o outfile]
[−s] [−w] operand...

Derivation: First released in Issue 4.

Issue 7: No functional changes are made in this issue.

fuser

Purpose: List process IDs of all processes that have one or more files open.

Synopsis:XSI fuser [−cfu] file...

Derivation: First released in Issue 5.

Issue 7: SD5-XCU-ERN-90 is applied, updating the EXAMPLES section.

gencat

Purpose: Generate a formatted message catalog.

Synopsis: gencat catfile msgfile...

Derivation: First released in Issue 3.

Issue 7: The gencat utility is moved from the XSI option to the Base.

get

Purpose: Get a version of an SCCS file (DEVELOPMENT).

Synopsis:XSI get [−begkmnlLpst] [−c cutoff] [−i list] [−r SID]
[−x list] file...

Derivation: First released in Issue 2.

Issue 7: No functional changes are made in this issue.

214 A Source Book from The Open Group (2010)

Utilities Migration Utilities

getconf

Purpose: Get configuration values.

Synopsis: getconf [−v specification] system_var

getconf [−v specification] path_var pathname

Derivation: First released in Issue 4.

Issue 7: No functional changes are made in this issue.

getopts

Purpose: Parse utility options.

Synopsis: getopts optstring name [arg...]

Derivation: First released in Issue 4.

Issue 7: No functional changes are made in this issue.

grep

Purpose: Search a file for a pattern.

Synopsis: grep [−E|−F] [−c|−l|−q] [−insvx] −e pattern_list
[−e pattern_list]... [−f pattern_file]... [file...]

grep [−E|−F] [−c|−l|−q] [−insvx] [−e pattern_list]...
−f pattern_file [−f pattern_file]... [file...]

grep [−E|−F] [−c|−l|−q] [−insvx] pattern_list [file...]

Derivation: First released in Issue 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #092 is applied, changing the STDIN
section to reflect that standard input is also used if a file operand is ’−’ and the
implementation treats the ’−’ as meaning standard input.

SD5-XCU-ERN-98 is applied, updating the STDOUT section to reflect the fact that
the −l and −q options are shown in the SYNOPSIS as mutually exclusive.

hash

Purpose: Remember or report utility locations.

Synopsis: hash [utility...]

hash −r

Derivation: First released in Issue 2.

Issue 7: The hash utility is moved from the XSI option to the Base.

The Authorized Guide to the Single UNIX Specification, Version 4 215

Utilities Utilities Migration

head

Purpose: Copy the first part of files.

Synopsis: head [−n number] [file...]

Derivation: First released in Issue 4.

Issue 7: Austin Group Interpretation 1003.1-2001 #092 is applied, changing the STDIN
section to reflect that standard input is also used if a file operand is ’−’ and the
implementation treats the ’−’ as meaning standard input.

The EXAMPLES section is revised to make use of the "− −" delimiter.

iconv

Purpose: Codeset conversion.

Synopsis: iconv [−cs] −f frommap −t tomap [file...]

iconv −f fromcode [−cs] [−t tocode] [file...]

iconv −t tocode [−cs] [−f fromcode] [file...]

iconv −l

Derivation: First released in Issue 3.

Issue 7: No functional changes are made in this issue.

id

Purpose: Return user identity.

Synopsis: id [user]

id −G [−n] [user]

id −g [−nr] [user]

id −u [−nr] [user]

Derivation: First released in Issue 2.

Issue 7: No functional changes are made in this issue.

ipcrm

Purpose: Remove an XSI message queue, semaphore set, or shared memory segment
identifier.

Synopsis:XSI ipcrm [−q msgid|−Q msgkey|−s semid|−S semkey|
−m shmid|−M shmkey]...

Derivation: First released in Issue 5.

Issue 7: No functional changes are made in this issue.

216 A Source Book from The Open Group (2010)

Utilities Migration Utilities

ipcs

Purpose: Report XSI interprocess communication facilities status.

Synopsis:XSI ipcs [−qms] [−a|−bcopt]

Derivation: First released in Issue 5.

Issue 7: No functional changes are made in this issue.

jobs

Purpose: Display status of jobs in the current session.

Synopsis:UP jobs [−l|−p] [job_id...]

Derivation: First released in Issue 4.

Issue 7: No functional changes are made in this issue.

join

Purpose: Relational database operator.

Synopsis: join [−a file_number|−v file_number] [−e string] [−o list]
[−t char] [−1 field] [−2 field] file1 file2

Derivation: First released in Issue 2.

Issue 7: No functional changes are made in this issue.

kill

Purpose: Terminate or signal processes.

Synopsis: kill −s signal_name pid...

kill −l [exit_status]

XSI kill [−signal_name] pid...

kill [−signal_number] pid...

Derivation: First released in Issue 2.

Issue 7: No functional changes are made in this issue.

lex

Purpose: Generate programs for lexical tasks (DEVELOPMENT).

Synopsis:CD lex [−t] [−n|−v] [file...]

Derivation: First released in Issue 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #190 is applied, clarifying the
requirements for generated code to conform to the IEEE Std 1003.1i-1995.

Austin Group Interpretation 1003.1-2001 #191 is applied, clarifying the handling of
C-language trigraphs and curly brace preprocessing tokens.

The Authorized Guide to the Single UNIX Specification, Version 4 217

Utilities Utilities Migration

SD5-XCU-ERN-6 is applied, clarifying that Guideline 9 of the Utility Syntax
Guidelines does not apply (options can be interspersed with operands).

link

Purpose: Call link() function.

Synopsis:XSI link file1 file2

Derivation: First released in Issue 5.

Issue 7: No functional changes are made in this issue.

ln

Purpose: Link files.

Synopsis: ln [−fs] [−L|−P] source_file target_file

ln [−fs] [−L|−P] source_file... target_dir

When the −L option is specified (and the −s option is not specified), for each
source_file operand that names a file of type symbolic link, ln creates a (hard) link to
the file referenced by the symbolic link.

When the −P option is specified (and the −s option is not specified), for each
source_file operand that names a file of type symbolic link, ln creates a (hard) link to
the symbolic link itself.

If the −s option is not specified and neither a −L nor a −P option is specified, it is
implementation-defined which of the −L and −P options will be used as the
default.

Derivation: First released in Issue 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #164 is applied, allowing ln to report an
error when it encounters an existing destination path that was written by a
previous step.

Austin Group Interpretation 1003.1-2001 #168 is applied, updating the description
of how two pathnames are concatenated so that a slash character is only inserted if
the first pathname does not end in a slash.

Austin Group Interpretation 1003.1-2001 #169 is applied, updating the
requirements when destination names the same directory entry as the current
source_file.

The −L and −P options are added to provide control over how the ln utility creates
hard links to symbolic links.

locale

Purpose: Get locale-specific information.

Synopsis: locale [−a|−m]

locale [−ck] name...

Derivation: First released in Issue 4.

218 A Source Book from The Open Group (2010)

Utilities Migration Utilities

Issue 7: Austin Group Interpretation 1003.1-2001 #017 is applied, clarifying the standard
output for the −k option for non-numeric compound keyword values.

Austin Group Interpretations 1003.1-2001 #021 and #088 are applied, clarifying the
standard output for the −k option when LANG is not set or is an empty string.

localedef

Purpose: Define locale environment.

Synopsis: localedef [−c] [−f charmap] [−i sourcefile]
[−u code_set_name] name

Derivation: First released in Issue 4.

Issue 7: No functional changes are made in this issue.

logger

Purpose: Log messages.

Synopsis: logger string...

Derivation: First released in Issue 4.

Issue 7: No functional changes are made in this issue.

logname

Purpose: Return the user’s login name.

Synopsis: logname

Derivation: First released in Issue 2.

Issue 7: No functional changes are made in this issue.

lp

Purpose: Send files to a printer.

Synopsis: lp [−c] [−d dest] [−n copies] [−msw] [−o option]...
[−t title] [file...]

Derivation: First released in Issue 2.

Issue 7: No functional changes are made in this issue.

ls

Purpose: List directory contents.

Synopsis:XSI ls [−ACFRSacdfiklmnpqrstux1] [−H|−L] [−go] [file...]

When the −A option is specified, ls writes out all directory entries, including those
whose names begin with a <period> (’.’) but excluding the entries dot and dot-
dot (if they exist).

When the −S option is specified, ls sorts with the primary key being file size (in
decreasing order) and the secondary key being filename in the collating sequence
(in increasing order).

When the −k option is specified, ls sets the block size for the −s option and the per-
directory block count written for the −l, −n, −s, −g, and −o options to 1 024 bytes.

The Authorized Guide to the Single UNIX Specification, Version 4 219

Utilities Utilities Migration

Derivation: First released in Issue 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #101 is applied, clarifying the optional
alternate access method flag in the STDOUT section.

Austin Group Interpretation 1003.1-2001 #128 is applied, clarifying the
DESCRIPTION and the definition of the −R option with regard to symbolic links.

Austin Group Interpretation 1003.1-2001 #198 is applied, clarifying the
requirements for the −H option for symbolic links specified on the command line.

SD5-XCU-ERN-50 is applied, adding the −A option.

The −S option is added from The Open Group Technical Standard, 2006, Extended
API Set Part 1.

The −f, −m, −n, −p, −s, and −x options are moved from the XSI option to the Base.

The description of the −f, −s, and −t options are revised and the −k option is added.

m4

Purpose: Macro processor.

Synopsis: m4 [−s] [−D name[=val]]... [−U name]... file...

Derivation: First released in Issue 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #117 is applied, marking the maketemp
macro obsolescent and adding a new mkstemp macro.

Austin Group Interpretation 1003.1-2001 #207 is applied, clarifying the handling of
white-space characters that precede or trail any macro arguments.

SD5-XCU-ERN-6 is applied, clarifying that Guideline 9 of the Utility Syntax
Guidelines does not apply (options can be interspersed with operands).

SD5-XCU-ERN-99 is applied, clarifying the definition of the divert macro in the
EXTENDED DESCRIPTION.

SD5-XCU-ERN-100 is applied, clarifying the definition of the syscmd macro in the
EXTENDED DESCRIPTION.

SD5-XCU-ERN-101 is applied, clarifying the definition of the undivert macro in
the EXTENDED DESCRIPTION.

SD5-XCU-ERN-111 is applied to the EXTENDED DESCRIPTION, clarifying that
the string "${" produces unspecified behavior.

SD5-XCU-ERN-112 is applied, updating the changequote macro.

SD5-XCU-ERN-118 is applied, clarifying the definition of the define macro in the
EXTENDED DESCRIPTION and APPLICATION USAGE sections.

SD5-XCU-ERN-119 is applied, clarifying the definition of the translit macro in the
EXTENDED DESCRIPTION and RATIONALE sections.

SD5-XCU-ERN-130 is applied, making the behavior unspecified when macro
names are used without arguments.

SD5-XCU-ERN-131 is applied, making the behavior unspecified when either
argument to the changecom macro is provided but null.

SD5-XCU-ERN-137 is applied, updating the description of the eval macro in the

220 A Source Book from The Open Group (2010)

Utilities Migration Utilities

EXTENDED DESCRIPTION and APPLICATION USAGE sections.

The m4 utility is moved from the XSI option to the Base.

mailx

Purpose: Process messages.

Synopsis: Send Mode

mailx [−s subject] address...

Receive Mode

UP mailx −e

mailx [−HiNn] [−F] [−u user]

mailx −f [−HiNn] [−F] [file]

Derivation: First released in Issue 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #089 is applied, clarifying the effect of the
LC_TIME environment variable.

Austin Group Interpretation 1003.1-2001 #090 is applied, updating the description
of the next command.

make

Purpose: Maintain, update, and regenerate groups of programs (DEVELOPMENT).

Synopsis:SD make [−einpqrst] [−f makefile]... [−k|−S] [macro=value...]
[target_name...]

Derivation: First released in Issue 2.

Issue 7: SD5-XCU-ERN-6 is applied, clarifying that Guideline 9 of the Utility Syntax
Guidelines does not apply (options can be interspersed with operands).

Include lines in makefiles are introduced.

Austin Group Interpretation 1003.1-2001 #131 is applied, changing the Makefile
Execution section.

man

Purpose: Display system documentation.

Synopsis: man [−k] name...

Derivation: First released in Issue 4.

Issue 7: Austin Group Interpretation 1003.1-2001 #108 is applied, clarifying that
informational messages may appear on standard error.

The Authorized Guide to the Single UNIX Specification, Version 4 221

Utilities Utilities Migration

mesg

Purpose: Permit or deny messages.

Synopsis: mesg [y|n]

Derivation: First released in Issue 2.

Issue 7: The mesg utility is moved from the User Portability Utilities option to the Base.
User Portability Utilities is now an option for interactive utilities.

mkdir

Purpose: Make directories.

Synopsis: mkdir [−p] [−m mode] dir...

Derivation: First released in Issue 2.

Issue 7: SD5-XCU-ERN-56 is applied, aligning the −m option with the IEEE P1003.2b draft
standard to clarify an ambiguity.

mkfifo

Purpose: Make FIFO special files.

Synopsis: mkfifo [−m mode] file...

Derivation: First released in Issue 3.

Issue 7: No functional changes are made in this issue.

more

Purpose: Display files on a page-by-page basis.

Synopsis:UP more [−ceisu] [−n number] [−p command] [−t tagstring]
[file...]

Derivation: First released in Issue 4.

Issue 7: Austin Group Interpretation 1003.1-2001 #027 is applied, clarifying that ’+’ may
be recognized as an option delimiter in the OPTIONS section.

mv

Purpose: Move files.

Synopsis: mv [−if] source_file target_file

mv [−if] source_file... target_dir

Derivation: First released in Issue 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #016 is applied, updating requirements
relating to a target_file operand with a trailing slash .

Austin Group Interpretation 1003.1-2001 #164 is applied, allowing mv to report an
error when it encounters an existing destination path that was written by a
previous step.

Austin Group Interpretation 1003.1-2001 #168 is applied, updating the description
of how two pathnames are concatenated so that a slash character is only inserted if

222 A Source Book from The Open Group (2010)

Utilities Migration Utilities

the first pathname does not end in a slash.

Austin Group Interpretation 1003.1-2001 #169 is applied, updating the
requirements when the source_file operand and destination path name the same
existing file.

SD5-XCU-ERN-51 is applied to the DESCRIPTION, clarifying that it is unspecified
whether hard links to other files are preserved when files are being duplicated to
another file system.

Changes are made related to support for finegrained timestamps.

newgrp

Purpose: Change to a new group.

Synopsis: newgrp [−l] [group]

Derivation: First released in Issue 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #027 is applied, clarifying the behavior if
the first argument is ’−’.

The newgrp utility is moved from the User Portability Utilities option to the Base.
User Portability Utilities is now an option for interactive utilities.

nice

Purpose: Invoke a utility with an altered nice value.

Synopsis: nice [−n increment] utility [argument...]

Derivation: First released in Issue 4.

Issue 7: The nice utility is moved from the User Portability Utilities option to the Base.
User Portability Utilities is now an option for interactive utilities.

nl

Purpose: Line numbering filter.

Synopsis:XSI nl [−p] [−b type] [−d delim] [−f type] [−h type] [−i incr]
[−l num] [−n format] [−s sep] [−v startnum]
[−w width] [file]

Derivation: First released in Issue 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #092 is applied, changing the STDIN
section to reflect that standard input is also used if a file operand is ’−’ and the
implementation treats the ’−’ as meaning standard input.

nm

Purpose: Write the name list of an object file (DEVELOPMENT).

Synopsis:SD nm [−APv] [−g|−u] [−t format] file...
XSI nm [−APv] [−efox] [−g|−u] [−t format] file...

The Authorized Guide to the Single UNIX Specification, Version 4 223

Utilities Utilities Migration

Derivation: First released in Issue 2.

Issue 7: The nm utility is removed from the User Portability Utilities option. User
Portability Utilities is now an option for interactive utilities.

nohup

Purpose: Invoke a utility immune to hangups.

Synopsis: nohup utility [argument...]

Derivation: First released in Issue 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #104 is applied, allowing nohup to redirect
standard input from an unspecified file if it is associated with a terminal.

Austin Group Interpretations 1003.1-2001 #105 and #106 are applied, updating
requirements related to redirection of standard output and standard error.

od

Purpose: Dump files in various formats.

Synopsis: od [−v] [−A address_base] [−j skip] [−N count]
[−t type_string]... [file...]

XSI od [−bcdosx] [file] [[+]offset[.][b]]

Derivation: First released in Issue 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #092 is applied, changing the STDIN
section to reflect that standard input is also used if a file operand is ’−’ and the
implementation treats the ’−’ as meaning standard input.

paste

Purpose: Merge corresponding or subsequent lines of files.

Synopsis: paste [−s] [−d list] file...

Derivation: First released in Issue 2.

Issue 7: No functional changes are made in this issue.

patch

Purpose: Apply changes to files.

Synopsis: patch [−blNR] [−c|−e|−n|−u] [−d dir] [−D define] [−i patchfile]
[−o outfile] [−p num] [−r rejectfile] [file]

When the −u option is specified, patch interprets the patch file as a unified context
difference (the output of the diff utility when the −u or −U options are specified).

Derivation: First released in Issue 4.

Issue 7: The patch utility is moved from the User Portability Utilities option to the Base.
User Portability Utilities is now an option for interactive utilities.

SD5-XCU-ERN-103 and SD5-XCU-ERN-120 are applied, adding the −u option.

Austin Group Interpretation 1003.1-2001 #126 is applied, changing the description
of the LC_CTYPE environment variable and adding the LC_COLLATE

224 A Source Book from The Open Group (2010)

Utilities Migration Utilities

environment variable.

pathchk

Purpose: Check pathnames.

Synopsis: pathchk [−p] [−P] pathname...

When the −P option is specified, pathchk writes a diagnostic for each pathname
operand that:

• Contains a component whose first character is the <hyphen> character

• Is empty

Derivation: First released in Issue 4.

Issue 7: Austin Group Interpretations 1003.1-2001 #039 and #040 are applied, adding the −P
option.

SD5-XCU-ERN-121 is applied, updating the way xargs is used in the EXAMPLES
section.

pax

Purpose: Portable archive interchange.

Synopsis: pax [−dv] [−c|−n] [−H|−L] [−o options] [−f archive]
[−s replstr]... [pattern...]

pax −r[−c|−n] [−dikuv] [−H|−L] [−f archive] [−o options]...
[−p string]... [−s replstr]... [pattern...]

pax −w [−dituvX] [−H|−L] [−b blocksize] [[−a] [−f archive]]
[−o options]... [−s replstr]... [−x format] [file...]

pax −r −w [−diklntuvX] [−H|−L] [−o options]... [−p string]...
[−s replstr]... [file...] directory

Derivation: First released in Issue 4.

Issue 7: Austin Group Interpretation 1003.1-2001 #011 is applied, clarifying how symbolic
links are archived in cpio format.

Austin Group Interpretation 1003.1-2001 #086 is applied, clarifying that when a list
of files to copy is read from the standard input, each entry in the list is processed as
if it had been a file operand on the command line.

Austin Group Interpretation 1003.1-2001 #109 is applied, adding the hdrcharset
keyword to the pax extended headers, and related requirements.

SD5-XCU-ERN-2 is applied, making the −c and −n options mutually-exclusive in
the SYNOPSIS.

SD5-XCU-ERN-60 is applied, revising text which incorrectly implied that the −x
option could be used in copy mode.

The pax utility is no longer allowed to create separate identical symbolic links
when extracting linked symbolic links from an archive, because the standard now
requires implementations to support (hard) linking of symbolic links.

The Authorized Guide to the Single UNIX Specification, Version 4 225

Utilities Utilities Migration

pr

Purpose: Print files.

Synopsis: pr [+page] [−column] [−adFmrt] [−e[char][gap]] [−h header]
[−i[char][gap]] [−l lines] [−n[char][width]]

XSI [−o offset] [−s[char]] [−w width] [−fp] [file...]

Derivation: First released in Issue 2.

Issue 7: PASC Interpretation 1003.2-92 #151 (SD5-XCU-ERN-44) is applied, replacing ‘‘two
or more’’ in the description of the −i option with ‘‘one or more’’.

Austin Group Interpretation 1003.1-2001 #093 is applied, adding APPLICATION
USAGE warning that a first operand that starts with a <plus-sign> needs to be
preceded with the "− −" argument that denotes the end of the options.

printf

Purpose: Write formatted output.

Synopsis: printf format [argument...]

Derivation: First released in Issue 4.

Issue 7: Austin Group Interpretation 1003.1-2001 #175 is applied, updating requirements
related to floating-point conversions to align with the printf() function.

Austin Group Interpretation 1003.1-2001 #177 is applied, clarifying the behavior of
the %c conversion.

prs

Purpose: Print an SCCS file (DEVELOPMENT).

Synopsis:XSI prs [−a] [−d dataspec] [−r[SID]] file...

prs [−e|−l] −c cutoff [−d dataspec] file...

prs [−e|−l] −r[SID] [−d dataspec] file...

Derivation: First released in Issue 2.

Issue 7: No functional changes are made in this issue.

ps

Purpose: Report process status.

Synopsis:XSI ps [−aA] [−defl] [−g grouplist] [−G grouplist]
[−n namelist] [−o format]... [−p proclist] [−t termlist]
[−u userlist] [−U userlist]

Derivation: First released in Issue 2.

Issue 7: No functional changes are made in this issue.

226 A Source Book from The Open Group (2010)

Utilities Migration Utilities

pwd

Purpose: Return working directory name.

Synopsis: pwd [−L|−P]

Derivation: First released in Issue 2.

Issue 7: Changes have been made to match the changes to the getcwd() function, adding
text to address the case where the current directory is deeper in the file hierarchy
than {PATH_MAX} bytes, and adding the requirements relating to pathnames
beginning with two slash characters.

qalter

Purpose: Alter batch job.

Synopsis:OB BE qalter [−a date_time] [−A account_string] [−c interval]
[−e path_name] [−h hold_list] [−j join_list]
[−k keep_list] [−l resource_list] [−m mail_options]
[−M mail_list] [−N name] [−o path_name] [−p priority]
[−r y|n] [−S path_name_list] [−u user_list]
job_identifier...

Derivation: Derived from IEEE Std 1003.2d-1994.

Issue 7: The qalter utility is marked obsolescent.

qdel

Purpose: Delete batch jobs.

Synopsis:OB BE qdel job_identifier...

Derivation: Derived from IEEE Std 1003.2d-1994.

Issue 7: The qdel utility is marked obsolescent.

qhold

Purpose: Hold batch jobs.

Synopsis:OB BE qhold [−h hold_list] job_identifier...

Derivation: Derived from IEEE Std 1003.2d-1994.

Issue 7: The qhold utility is marked obsolescent.

qmove

Purpose: Move batch jobs.

Synopsis:OB BE qmove destination job_identifier...

Derivation: Derived from IEEE Std 1003.2d-1994.

Issue 7: The qmove utility is marked obsolescent.

The Authorized Guide to the Single UNIX Specification, Version 4 227

Utilities Utilities Migration

qmsg

Purpose: Send message to batch jobs.

Synopsis:OB BE qmsg [−EO] message_string job_identifier...

Derivation: Derived from IEEE Std 1003.2d-1994.

Issue 7: The qmsg utility is marked obsolescent.

qrerun

Purpose: Rerun batch jobs.

Synopsis:OB BE qrerun job_identifier...

Derivation: Derived from IEEE Std 1003.2d-1994.

Issue 7: The qrerun utility is marked obsolescent.

qrls

Purpose: Release batch jobs.

Synopsis:OB BE qrls [−h hold_list] job_identifier...

Derivation: Derived from IEEE Std 1003.2d-1994.

Issue 7: The qrls utility is marked obsolescent.

qselect

Purpose: Select batch jobs.

Synopsis:OB BE qselect [−a [op]date_time] [−A account_string]
[−c [op]interval] [−h hold_list] [−l resource_list]
[−N name] [−p [op]priority] [−q destination]
[−r y|n] [−s states] [−u user_list]

Derivation: Derived from IEEE Std 1003.2d-1994.

Issue 7: The qselect utility is marked obsolescent.

qsig

Purpose: Signal batch jobs.

Synopsis:OB BE qsig [−s signal] job_identifier...

Derivation: Derived from IEEE Std 1003.2d-1994.

Issue 7: The qsig utility is marked obsolescent.

228 A Source Book from The Open Group (2010)

Utilities Migration Utilities

qstat

Purpose: Show status of batch jobs.

Synopsis:OB BE qstat [−f] job_identifier...

qstat −Q [−f] destination...

qstat −B [−f] server_name...

Derivation: Derived from IEEE Std 1003.2d-1994.

Issue 7: The qstat utility is marked obsolescent.

qsub

Purpose: Submit a script.

Synopsis:OB BE qsub [−a date_time] [−A account_string] [−c interval]
[−C directive_prefix] [−e path_name] [−h] [−j join_list]
[−k keep_list] [−m mail_options] [−M mail_list] [−N name]
[−o path_name] [−p priority] [−q destination] [−r y|n]
[−S path_name_list] [−u user_list] [−v variable_list] [−V]
[−z] [script]

Derivation: Derived from IEEE Std 1003.2d-1994.

Issue 7: The qsub utility is marked obsolescent.

read

Purpose: Read a line from standard input.

Synopsis: read [−r] var...

Derivation: First released in Issue 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #194 is applied, clarifying the handling of
the <backslash> escape character.

renice

Purpose: Set nice values of running processes.

Synopsis: renice [−g|−p|−u] −n increment ID...

Derivation: First released in Issue 4.

Issue 7: Austin Group Interpretation 1003.1-2001 #027 is applied, clarifying that Guideline
9 of the Utility Syntax Guidelines does not apply (options can be interspersed with
operands).

The renice utility is moved from the User Portability Utilities option to the Base.
User Portability Utilities is now an option for interactive utilities.

The Authorized Guide to the Single UNIX Specification, Version 4 229

Utilities Utilities Migration

rm

Purpose: Remove directory entries.

Synopsis: rm [−fiRr] file...

Derivation: First released in Issue 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #019 is applied, requiring rm to report an
error if an operand resolves to the root directory.

Austin Group Interpretation 1003.1-2001 #091 is applied, updating the description
of exit status 0 in the EXIT STATUS section.

rmdel

Purpose: Remove a delta from an SCCS file (DEVELOPMENT).

Synopsis:XSI rmdel −r SID file...

Derivation: First released in Issue 2.

Issue 7: No functional changes are made in this issue.

rmdir

Purpose: Remove directories.

Synopsis: rmdir [−p] dir...

Derivation: First released in Issue 2.

Issue 7: No functional changes are made in this issue.

sact

Purpose: Print current SCCS file-editing activity (DEVELOPMENT).

Synopsis:XSI sact file...

Derivation: First released in Issue 2.

Issue 7: No functional changes are made in this issue.

sccs

Purpose: Front end for the SCCS subsystem (DEVELOPMENT).

Synopsis:XSI sccs [−r] [−d path] [−p path] command [options...]
[operands...]

Derivation: First released in Issue 4.

Issue 7: No functional changes are made in this issue.

230 A Source Book from The Open Group (2010)

Utilities Migration Utilities

sed

Purpose: Stream editor.

Synopsis: sed [−n] script [file...]

sed [−n] −e script [−e script]... [−f script_file]...
[file...]

sed [−n] [−e script]... −f script_file [−f script_file]...
[file...]

Derivation: First released in Issue 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #036 is applied, clarifying the behavior
for BRE back-references when a subexpression does not participate in the match.

Austin Group Interpretation 1003.1-2001 #092 is applied, changing the STDIN
section to reflect that standard input is also used if a file operand is ’−’ and the
implementation treats the ’−’ as meaning standard input.

SD5-XCU-ERN-123 is applied, updating the SYNOPSIS so that it correctly reflects
the relationship between the script operand and the −e and −f options.

A second example is added, giving a simpler method of squeezing empty lines.

sh

Purpose: Shell, the standard command language interpreter.

Synopsis: sh [−abCefhimnuvx] [−o option]... [+abCefhimnuvx]
[+o option]... [command_file [argument...]]

sh −c [−abCefhimnuvx] [−o option]... [+abCefhimnuvx]
[+o option]... command_string [command_name [argument...]]

sh −s [−abCefhimnuvx] [−o option]... [+abCefhimnuvx]
[+o option]... [argument...]

Derivation: First released in Issue 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #098 is applied, changing the description
of IFS to match the one in section 2.5.3.

The description of the PWD environment variable is updated to reflect that
assignments to the variable may always be ignored.

Minor changes are made to the install script example in the APPLICATION
USAGE section.

sleep

Purpose: Suspend execution for an interval.

Synopsis: sleep time

Derivation: First released in Issue 2.

Issue 7: No functional changes are made in this issue.

The Authorized Guide to the Single UNIX Specification, Version 4 231

Utilities Utilities Migration

sort

Purpose: Sort, merge, or sequence check text files.

Synopsis: sort [−m] [−o output] [−bdfinru] [−t char] [−k keydef]...
[file...]

sort [−c|−C] [−bdfinru] [−t char] [−k keydef] [file]

The −C option is the same as −c, except that a warning message is not sent to
standard error if disorder or, with −u, a duplicate key is detected.

Derivation: First released in Issue 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #027 is applied, clarifying that Guideline
9 of the Utility Syntax Guidelines does not apply (options can be interspersed with
operands), and noting that ’+’ may be recognized as an option delimiter.

Austin Group Interpretation 1003.1-2001 #120 is applied, updating the −c option to
require that the warning message sent to standard error indicates where the
disorder or duplicate key was found, and introducing the −C option.

XCU-ERN-81 is applied, modifying the description of the −i option to state that the
behavior is undefined for a sort key for which −n also applies.

split

Purpose: Split files into pieces.

Synopsis: split [−l line_count] [−a suffix_length] [file[name]]

split −b n[k|m] [−a suffix_length] [file[name]]

Derivation: First released in Issue 2.

Issue 7: The split utility is moved from the User Portability Utilities option to the Base.
User Portability Utilities is now an option for interactive utilities.

strings

Purpose: Find printable strings in files.

Synopsis: strings [−a] [−t format] [−n number] [file...]

Derivation: First released in Issue 4.

Issue 7: Austin Group Interpretation 1003.1-2001 #027 is applied, clarifying the behavior if
the first argument is ’−’.

The strings utility is moved from the User Portability Utilities option to the Base.
User Portability Utilities is now an option for interactive utilities.

strip

Purpose: Remove unnecessary information from strippable files (DEVELOPMENT).

Synopsis:SD strip file...

Derivation: First released in Issue 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #103 is applied, clarifying that XSI-
conformant systems support use of strip on archive files containing object files or
relocatable files.

232 A Source Book from The Open Group (2010)

Utilities Migration Utilities

stty

Purpose: Set the options for a terminal.

Synopsis: stty [−a|−g]

stty operand...

Derivation: First released in Issue 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #144 is applied, moving functionality
relating to the IXANY symbol from the XSI option to the Base.

tabs

Purpose: Set terminal tabs.

Synopsis:XSI tabs [−n|−a|−a2|−c|−c2|−c3|−f|−p|−s|−u] [−T type]

tabs [−T type] n[[sep[+]n]...]

Derivation: First released in Issue 2.

Issue 7: The tabs utility is removed from the User Portability Utilities option. User
Portability Utilities is now an option for interactive utilities.

tail

Purpose: Copy the last part of a file.

Synopsis: tail [−f] [−c number|−n number] [file]

Derivation: First released in Issue 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #027 is applied, clarifying that ’+’ may
be recognized as an option delimiter in the OPTIONS section.

Austin Group Interpretation 1003.1-2001 #092 is applied, changing the STDIN
section to reflect that standard input is also used if the file operand is ’−’ and the
implementation treats the ’−’ as meaning standard input.

Austin Group Interpretation 1003.1-2001 #100 is applied, adding the requirement
on applications that if the sign of the option-argument number is ’+’, the number
option-argument is non-zero.

SD5-XCU-ERN-114 is applied, updating the −f option so that a FIFO on standard
input is treated the same as a pipe.

talk

Purpose: Talk to another user.

Synopsis:UP talk address [terminal]

Derivation: First released in Issue 4.

Issue 7: No functional changes are made in this issue.

The Authorized Guide to the Single UNIX Specification, Version 4 233

Utilities Utilities Migration

tee

Purpose: Duplicate standard input.

Synopsis: tee [−ai] [file...]

Derivation: First released in Issue 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #092 is applied, specifying that a file
operand of ’−’ shall refer to a file named ’−’; implementations shall not treat it as
meaning standard output.

test

Purpose: Evaluate expression.

Synopsis: test [expression]

[[expression]]

Derivation: First released in Issue 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #107 is applied, marking the XSI
extensions specifying the −a and −o primaries and the ’(’ and ’)’ operators as
obsolescent. Applications should combine separate test commands instead. For
example, using:

test expr1 && test expr2

instead of:

test expr1 −a expr2

time

Purpose: Time a simple command.

Synopsis: time [−p] utility [argument...]

Derivation: First released in Issue 2.

Issue 7: The time utility is moved from the User Portability Utilities option to the Base.
User Portability Utilities is now an option for interactive utilities.

touch

Purpose: Change file access and modification times.

Synopsis: touch [−acm] [−r ref_file|−t time|−d date_time] file...

When the −d date_time option is specified, touch uses the specified date_time instead
of the current time. The option-argument is a string of the form:

YYYY−MM−DDThh:mm:SS[.frac][tz]

or:

YYYY−MM−DDThh:mm:SS[,frac][tz]

where:

• YYYY are at least four decimal digits giving the year.

234 A Source Book from The Open Group (2010)

Utilities Migration Utilities

• MM, DD, hh, mm, and SS are as with −t time.

• T is the time designator, and can be replaced by a single <space>.

• [.frac] and [,frac] are either empty, or a <period> (’.’) or a <comma>
(’,’) respectively, followed by one or more decimal digits, specifying a
fractional second.

• [tz] is either empty, signifying local time, or the letter ’Z’, signifying UTC.

The following examples demonstrate the use of the −d option.

Create or update a file called dwc; the resulting file has both the last data
modification and last data access timestamps set to November 12, 2007 at 10:15:30
local time:

touch −d 2007-11-12T10:15:30 dwc

Create or update a file called nick; the resulting file has both the last data
modification and last data access timestamps set to November 12, 2007 at 10:15:30
UTC:

touch −d 2007-11-12T10:15:30Z nick

Create or update a file called gwc; the resulting file has both the last data
modification and last data access timestamps set to November 12, 2007 at 10:15:30
local time with a fractional second timestamp of .002 seconds:

touch −d 2007-11-12T10:15:30,002 gwc

Create or update a file called ajosey; the resulting file has both the last data
modification and last data access timestamps set to November 12, 2007 at 10:15:30
UTC with a fractional second timestamp of .002 seconds:

touch −d "2007-11-12 10:15:30.002Z" ajosey

Derivation: First released in Issue 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #118 is applied, allowing touch to support
times that precede the Epoch.

Austin Group Interpretation 1003.1-2001 #193 is applied, adding the −d option
with support for subsecond timestamps.

SD5-XCU-ERN-45 is applied, adding a new paragraph to the RATIONALE noting
that if at least two operands are specified and the first operand is an eight or ten-
digit decimal integer, the first operand will be taken to be a file operand, whereas
in previous versions of the standard it would have been taken to be an
(obsolescent) date_time operand.

Changes are made related to support for finegrained timestamps.

tput

Purpose: Change terminal characteristics.

Synopsis: tput [−T type] operand...

Derivation: First released in Issue 4.

Issue 7: The tput utility is moved from the User Portability Utilities option to the Base.
User Portability Utilities is now an option for interactive utilities.

The Authorized Guide to the Single UNIX Specification, Version 4 235

Utilities Utilities Migration

tr

Purpose: Translate characters.

Synopsis: tr [−c|−C] [−s] string1 string2

tr −s [−c|−C] string1

tr −d [−c|−C] string1

tr −ds [−c|−C] string1 string2

Derivation: First released in Issue 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #132 is applied, clarifying that the
behavior is unspecified if an unescaped trailing <backslash> is present in string1 or
string2.

true

Purpose: Return true value.

Synopsis: true

Derivation: First released in Issue 2.

Issue 7: No functional changes are made in this issue.

tsort

Purpose: Topological sort.

Synopsis: tsort [file]

Derivation: First released in Issue 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #092 is applied, changing the STDIN
section to reflect that standard input is also used if a file operand is ’−’ and the
implementation treats the ’−’ as meaning standard input.

The tsort utility is moved from the XSI option to the Base.

tty

Purpose: Return user ’s terminal name.

Synopsis: tty

Derivation: First released in Issue 2.

Issue 7: No functional changes are made in this issue.

type

Purpose: Write a description of command type.

Synopsis:XSI type name...

Derivation: First released in Issue 2.

Issue 7: No functional changes are made in this issue.

236 A Source Book from The Open Group (2010)

Utilities Migration Utilities

ulimit

Purpose: Set or report file size limit.

Synopsis:XSI ulimit [−f] [blocks]

Derivation: First released in Issue 2.

Issue 7: No functional changes are made in this issue.

umask

Purpose: Get or set the file mode creation mask.

Synopsis: umask [−S] [mask]

Derivation: First released in Issue 2.

Issue 7: No functional changes are made in this issue.

unalias

Purpose: Remove alias definitions.

Synopsis: unalias alias-name...

unalias −a

Derivation: First released in Issue 4.

Issue 7: The unalias utility is moved from the User Portability Utilities option to the Base.
User Portability Utilities is now an option for interactive utilities.

uname

Purpose: Return system name.

Synopsis: uname [−amnrsv]

Derivation: First released in Issue 2.

Issue 7: No functional changes are made in this issue.

uncompress

Purpose: Expand compressed data.

Synopsis:XSI uncompress [−cfv] [file...]

Derivation: First released in Issue 4.

Issue 7: SD5-XCU-ERN-26 is applied, clarifying that this utility is allowed to break the
Utility Syntax Guidelines by having ten letters in its name.

The Authorized Guide to the Single UNIX Specification, Version 4 237

Utilities Utilities Migration

unexpand

Purpose: Convert spaces to tabs.

Synopsis: unexpand [−a|−t tablist] [file...]

Derivation: First released in Issue 4.

Issue 7: The unexpand utility is moved from the User Portability Utilities option to the Base.
User Portability Utilities is now an option for interactive utilities.

unget

Purpose: Undo a previous get of an SCCS file (DEVELOPMENT).

Synopsis:XSI unget [−ns] [−r SID] file...

Derivation: First released in Issue 2.

Issue 7: No functional changes are made in this issue.

uniq

Purpose: Report or filter out repeated lines in a file.

Synopsis: uniq [−c|−d|−u] [−f fields] [−s char] [input_file [output_file]]

Derivation: First released in Issue 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #027 is applied, clarifying that ’+’ may
be recognized as an option delimiter in the OPTIONS section.

Austin Group Interpretation 1003.1-2001 #092 is applied, changing the STDOUT
section to reflect that standard output is also used if an output_file operand is ’−’
and the implementation treats the ’−’ as meaning standard output.

Austin Group Interpretation 1003.1-2001 #133 is applied, clarifying that the trailing
<newline> of each line in the input is ignored when doing comparisons.

unlink

Purpose: Call the unlink() function.

Synopsis:XSI unlink file

Derivation: First released in Issue 5.

Issue 7: No functional changes are made in this issue.

uucp

Purpose: System-to-system copy.

Synopsis:UU uucp [−cCdfjmr] [−n user] source-file... destination-file

Derivation: First released in Issue 2.

Issue 7: SD5-XCU-ERN-46 is applied, moving this utility to the UUCP Utilities Option
Group.

238 A Source Book from The Open Group (2010)

Utilities Migration Utilities

uudecode

Purpose: Decode a binary file.

Synopsis: uudecode [−o outfile] [file]

Derivation: First released in Issue 4.

Issue 7: The uudecode utility is moved from the User Portability Utilities option to the Base.
User Portability Utilities is now an option for interactive utilities.

uuencode

Purpose: Encode a binary file.

Synopsis: uuencode [−m] [file] decode_pathname

Derivation: First released in Issue 4.

Issue 7: The uuencode utility is moved from the User Portability Utilities option to the Base.
User Portability Utilities is now an option for interactive utilities.

uustat

Purpose: uucp status enquiry and job control.

Synopsis:UU uustat [−q|−k jobid|−r jobid]

uustat [−s system] [−u user]

Derivation: First released in Issue 2.

Issue 7: SD5-XCU-ERN-46 is applied, moving this utility to the UUCP Utilities Option
Group.

uux

Purpose: Remote command execution.

Synopsis:UU uux [−jnp] command−string

Derivation: First released in Issue 2.

Issue 7: SD5-XCU-ERN-46 is applied, moving this utility to the UUCP Utilities Option
Group.

val

Purpose: Validate SCCS files (DEVELOPMENT).

Synopsis:XSI val −

val [−s] [−m name] [−r SID] [−y type] file...

Derivation: First released in Issue 2.

Issue 7: No functional changes are made in this issue.

The Authorized Guide to the Single UNIX Specification, Version 4 239

Utilities Utilities Migration

vi

Purpose: Screen-oriented (visual) display editor.

Synopsis:UP vi [−rR] [−c command] [−t tagstring] [−w size] [file...]

Derivation: First released in Issue 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #027 is applied, clarifying that ’+’ may
be recognized as an option delimiter in the OPTIONS section.

Austin Group Interpretation 1003.1-2001 #087 is applied, updating the Put from
Buffer Before (P) command description to address multi-line requirements.

wait

Purpose: Await process completion.

Synopsis: wait [pid...]

Derivation: First released in Issue 2.

Issue 7: No functional changes are made in this issue.

wc

Purpose: Word, line, and byte or character count.

Synopsis: wc [−c|−m] [−lw] [file...]

Derivation: First released in Issue 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #092 is applied, changing the STDIN
section to reflect that standard input is also used if a file operand is ’−’ and the
implementation treats the ’−’ as meaning standard input.

what

Purpose: Identify SCCS files (DEVELOPMENT).

Synopsis:XSI what [−s] file...

Derivation: First released in Issue 2.

Issue 7: No functional changes are made in this issue.

who

Purpose: Display who is on the system.

Synopsis:XSI who [−mTu] [−abdHlprt] [file]

XSI who [−mu] −s [−bHlprt] [file]

who −q [file]

who am i

who am I

240 A Source Book from The Open Group (2010)

Utilities Migration Utilities

Derivation: First released in Issue 2.

Issue 7: SD5-XCU-ERN-58 is applied, clarifying the −b option.

The who utility is moved from the User Portability Utilities option to the Base.
User Portability Utilities is now an option for interactive utilities.

write

Purpose: Write to another user.

Synopsis: write user_name [terminal]

Derivation: First released in Issue 2.

Issue 7: The write utility is moved from the User Portability Utilities option to the Base.
User Portability Utilities is now an option for interactive utilities.

xargs

Purpose: Construct argument lists and invoke utility.

Synopsis:XSI xargs [−ptx] [−E eofstr] [−I replstr|−L number|−n number]
[−s size] [utility [argument...]]

Derivation: First released in Issue 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #123 is applied, changing the description
of the xargs −I option.

SD5-XCU-ERN-68 is applied, changing requirements related to the −x option and
changing the SYNOPSIS to show that the −I, −L and −n options are mutually
exclusive.

SD5-XCU-ERN-128 is applied, clarifying the DESCRIPTION of the logical end-of-
file string.

SD5-XCU-ERN-132 is applied, updating the EXAMPLES section to demonstrate
how to quote xargs input appropriately, and the use of −E "" to prevent accidental
logical end-of-file processing.

yacc

Purpose: Yet another compiler compiler (DEVELOPMENT).

Synopsis:CD yacc [−dltv] [−b file_prefix] [−p sym_prefix] grammar

Derivation: First released in Issue 2.

Issue 7: Austin Group Interpretation 1003.1-2001 #190 is applied, clarifying the
requirements for generated code to conform to the IEEE Std 1003.1i-1995.

Austin Group Interpretation 1003.1-2001 #191 is applied, clarifying the handling of
C-language trigraphs and curly brace preprocessing tokens.

SD5-XCU-ERN-6 is applied, clarifying that Guideline 9 of the Utility Syntax
Guidelines does not apply (options can be interspersed with operands).

The Authorized Guide to the Single UNIX Specification, Version 4 241

Utilities Utilities Migration

zcat

Purpose: Expand and concatenate data.

Synopsis:XSI zcat [file...]

Derivation: First released in Issue 4.

Issue 7: No functional changes are made in this issue.

242 A Source Book from The Open Group (2010)

Chapter 13

Headers Migration

13.1 Introduction

This chapter contains a section for each header defined in XBD, Issue 7. Each section contains the
SYNOPSIS, gives the derivation of the header, and identifies syntax and semantic changes made
to the header in Issue 7 (if any). Only changes that might affect an application programmer are
identified.

13.2 Headers

<aio.h>

Purpose: Asynchronous input and output.

Synopsis: #include <aio.h>

Derivation: First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

Issue 7: The <aio.h> header is moved from the Asynchronous Input and Output option to
the Base.

This reference page is clarified with respect to macros and symbolic constants, and
type and structure definitions from other headers are added.

<arpa/inet.h>

Purpose: Definitions for Internet operations.

Synopsis: #include <arpa/inet.h>

Derivation: First released in Issue 6. Derived from the Commands and Utilities, Issue 5
(XCU5).

Issue 7: No functional changes are made in this issue.

<assert.h>

Purpose: Verify program assertion.

Synopsis: #include <assert.h>

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

The Authorized Guide to the Single UNIX Specification, Version 4 243

Headers Headers Migration

<complex.h>

Purpose: Complex arithmetic.

Synopsis: #include <complex.h>

Derivation: First released in Issue 6. Included for alignment with the ISO/IEC 9899: 1999
standard.

Issue 7: No functional changes are made in this issue.

<cpio.h>

Purpose: Cpio archive values.

Synopsis: #include <cpio.h>

Derivation: First released in the . Derived from the IEEE Std 1003.1-1988 (POSIX.1).

Issue 7: The <cpio.h> header is moved from the XSI option to the Base.

This reference page is clarified with respect to macros and symbolic constants.

<ctype.h>

Purpose: Character types.

Synopsis: #include <ctype.h>

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: The *_l() functions are added from The Open Group Technical Standard, 2006,
Extended API Set Part 4.

<dirent.h>

Purpose: Format of directory entries.

Synopsis: #include <dirent.h>

Derivation: First released in Issue 2.

Issue 7: The alphasort(), dirfd(), and scandir() functions are added from The Open Group
Technical Standard, 2006, Extended API Set Part 1.

The fdopendir() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 2.

Austin Group Interpretation 1003.1-2001 #110 is applied, clarifying that the DIR
type may be defined as an incomplete type.

<dlfcn.h>

Purpose: Dynamic linking.

Synopsis: #include <dlfcn.h>

Derivation: First released in Issue 5.

Issue 7: The <dlfcn.h> header is moved from the XSI option to the Base.

This reference page is clarified with respect to macros and symbolic constants.

244 A Source Book from The Open Group (2010)

Headers Migration Headers

<errno.h>

Purpose: System error numbers.

Synopsis: #include <errno.h>

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: Austin Group Interpretation 1003.1-2001 #050 is applied, allowing [ENOTSUP] and
[EOPNOTSUPP] to be the same values.

The [ENOTRECOVERABLE] and [EOWNERDEAD] errors are added from The
Open Group Technical Standard, 2006, Extended API Set Part 2.

Functionality relating to the XSI STREAMS option is marked obsolescent.

Functionality relating to the Threads option is moved to the Base.

This reference page is clarified with respect to macros and symbolic constants.

<fcntl.h>

Purpose: File control options.

Synopsis: #include <fcntl.h>

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: Austin Group Interpretation 1003.1-2001 #144 is applied, adding the O_TTY_INIT
flag.

Austin Group Interpretation 1003.1-2001 #171 is applied, adding the
F_DUPFD_CLOEXEC and O_CLOEXEC flags.

The openat() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 2.

The O_EXEC and O_SEARCH flags are added.

Additional flags are added to support faccessat(), fchmodat(), fchownat(), fstatat(),
linkat(), openat(), and unlinkat().

This reference page is clarified with respect to macros and symbolic constants.

Changes are made related to support for finegrained timestamps.

<fenv.h>

Purpose: Floating-point environment.

Synopsis: #include <fenv.h>

Derivation: First released in Issue 6. Included for alignment with the ISO/IEC 9899: 1999
standard.

Issue 7: ISO/IEC 9899: 1999 standard, Technical Corrigendum 2 #37 (SD5-XBD-ERN-49) is
applied, clarifying that if no floating-point exception macros are defined by the
implementation, FE_ALL_EXCEPT shall be defined as zero.

ISO/IEC 9899: 1999 standard, Technical Corrigendum 3 #36 is applied, requiring
that the floating-point exception macros expand to integer constant expressions
with values that are bitwise-distinct.

SD5-XBD-ERN-48 and SD5-XBD-ERN-69 are applied, clarifying that
implementations which support the IEC 60559 Floating-Point option are required

The Authorized Guide to the Single UNIX Specification, Version 4 245

Headers Headers Migration

to define all five floating-point exception macros and all four rounding direction
macros.

This reference page is clarified with respect to macros and symbolic constants.

<float.h>

Purpose: Floating types.

Synopsis: #include <float.h>

Derivation: First released in Issue 4. Derived from the IEEE Std 1003.1i-1995.

Issue 7: ISO/IEC 9899: 1999 standard, Technical Corrigendum 2 #4 (SD5-XBD-ERN-50) is
applied, clarifying that an implementation may give zero and non-numeric values,
such as infinities and NaNs, a sign, or may leave them unsigned.

ISO/IEC 9899: 1999 standard, Technical Corrigendum 2 #5 (SD5-XBD-ERN-51) is
applied, extending the text concerning floating-point accuracy to cover conversion
between floating-point internal representations and string representations
performed by the functions in <stdio.h>, <stdlib.h>, and <wchar.h>.

<fmtmsg.h>

Purpose: Message display structures.

XSI Synopsis: #include <fmtmsg.h>

Derivation: First released in Issue 4, Version 2.

Issue 7: This reference page is clarified with respect to macros and symbolic constants.

<fnmatch.h>

Purpose: Filename-matching types.

Synopsis: #include <fnmatch.h>

Derivation: First released in Issue 4. Derived from the .

Issue 7: The obsolescent FNM_NOSYS constant is removed.

This reference page is clarified with respect to macros and symbolic constants.

<ftw.h>

Purpose: File tree traversal.

XSI Synopsis: #include <ftw.h>

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: The ftw() function is marked obsolescent.

This reference page is clarified with respect to macros and symbolic constants.

246 A Source Book from The Open Group (2010)

Headers Migration Headers

<glob.h>

Purpose: Pathname pattern-matching types.

Synopsis: #include <glob.h>

Derivation: First released in Issue 4. Derived from the .

Issue 7: SD5-XBD-ERN-56 is applied, adding a reference to <sys/types.h> for the size_t
type.

The obsolescent GLOB_NOSYS constant is removed.

This reference page is clarified with respect to macros and symbolic constants.

<grp.h>

Purpose: Group structure.

Synopsis: #include <grp.h>

Derivation: First released in Issue 1.

Issue 7: SD5-XBD-ERN-56 is applied, adding a reference to <sys/types.h> for the size_t
type.

<iconv.h>

Purpose: Codeset conversion facility.

Synopsis: #include <iconv.h>

Derivation: First released in Issue 4.

Issue 7: SD5-XBD-ERN-56 is applied, adding a reference to <sys/types.h> for the size_t
type.

The <iconv.h> header is moved from the XSI option to the Base.

<inttypes.h>

Purpose: Fixed size integer types.

Synopsis: #include <inttypes.h>

Derivation: First released in Issue 5.

Issue 7: No functional changes are made in this issue.

<iso646.h>

Purpose: Alternative spellings.

Synopsis: #include <iso646.h>

Derivation: First released in Issue 5. Derived from .

Issue 7: No functional changes are made in this issue.

The Authorized Guide to the Single UNIX Specification, Version 4 247

Headers Headers Migration

<langinfo.h>

Purpose: Language information constants.

Synopsis: #include <langinfo.h>

Derivation: First released in Issue 2.

Issue 7: The <langinfo.h> header is moved from the XSI option to the Base.

The nl_langinfo_l() function is added from The Open Group Technical Standard,
2006, Extended API Set Part 4.

This reference page is clarified with respect to macros and symbolic constants, and
a reference to <locale.h> for the locale_t type is added.

<libgen.h>

Purpose: Definitions for pattern matching functions.

XSI Synopsis: #include <libgen.h>

Derivation: First released in Issue 4, Version 2.

Issue 7: No functional changes are made in this issue.

<limits.h>

Purpose: Implementation-defined constants.

Synopsis: #include <limits.h>

Derivation: First released in Issue 1.

Issue 7: Austin Group Interpretation 1003.1-2001 #143 is applied, allowing
implementations to support pathnames longer than {PATH_MAX}.

Austin Group Interpretation 1003.1-2001 #173 is applied, updating the descriptions
of {TRACE_EVENT_NAME_MAX} and {TRACE_NAME_MAX} to not include the
terminating null.

SD5-XBD-ERN-36 is applied, changing the description of {RE_DUP_MAX} to
clarify that it applies to both BREs and EREs.

{NL_NMAX} is removed; it should have been removed in Issue 6.

The Trace option values are marked obsolescent.

The {ATEXIT_MAX}, {LONG_BIT}, {NL_MSGMAX}, {NL_SETMAX},
{NL_TEXTMAX}, and {WORD_BIT} values are moved from the XSI option to the
Base.

Functionality relating to the Asynchronous Input and Output, Realtime Signals
Extension, Threads, and Timers options is moved to the Base.

This reference page is clarified with respect to macros and symbolic constants.

248 A Source Book from The Open Group (2010)

Headers Migration Headers

<locale.h>

Purpose: Category macros.

Synopsis: #include <locale.h>

Derivation: First released in Issue 3.

Included for alignment with the IEEE Std 1003.1i-1995.

Issue 7: The duplocale(), freelocale(), newlocale(), and uselocale() functions are added from
The Open Group Technical Standard, 2006, Extended API Set Part 4.

This reference page is clarified with respect to macros and symbolic constants.

<math.h>

Purpose: Mathematical declarations.

Synopsis: #include <math.h>

Derivation: First released in Issue 1.

Issue 7: ISO/IEC 9899: 1999 standard, Technical Corrigendum 2 #47 (SD5-XBD-ERN-52) is
applied, updating the wording of the FP_FAST_FMA macro to require that it
expands to the integer constant 1 if it is defined.

The MAXFLOAT constant is marked obsolescent. Applications should use
FLT_MAX as described in the <float.h> header instead.

This reference page is clarified with respect to macros and symbolic constants.

<monetary.h>

Purpose: Monetary types.

Synopsis: #include <monetary.h>

Derivation: First released in Issue 4.

Issue 7: The <monetary.h> header is moved from the XSI option to the Base.

The strmon_l() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 4.

A reference to <locale.h> for the locale_t type is added.

<mqueue.h>

Purpose: Message queues (REALTIME).

MSG Synopsis: #include <mqueue.h>

Derivation: First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

Issue 7: Type and structure definitions from other headers are added.

The Authorized Guide to the Single UNIX Specification, Version 4 249

Headers Headers Migration

<ndbm.h>

Purpose: Definitions for ndbm database operations.

XSI Synopsis: #include <ndbm.h>

Derivation: First released in Issue 4, Version 2.

Issue 7: This reference page is clarified with respect to macros and symbolic constants.

<netdb.h>

Purpose: Definitions for network database operations.

Synopsis: #include <netdb.h>

Derivation: First released in Issue 6. Derived from the Commands and Utilities, Issue 5
(XCU5).

Issue 7: SD5-XBD-ERN-14 is applied, changing the description of the s_port member of the
servent structure to clarify the way in which port numbers are converted to and
from network byte order.

The obsolescent h_errno external integer, and the obsolescent gethostbyaddr() and
gethostbyname() functions are removed, along with the HOST_NOT_FOUND,
NO_DATA, NO_RECOVERY, and TRY_AGAIN macros.

This reference page is clarified with respect to macros and symbolic constants.

<net/if.h>

Purpose: Sockets local interfaces.

Synopsis: #include <net/if.h>

Derivation: First released in Issue 6. Derived from the Commands and Utilities, Issue 5
(XCU5).

Issue 7: This reference page is clarified with respect to macros and symbolic constants.

<netinet/in.h>

Purpose: Internet address family.

Synopsis: #include <netinet/in.h>

Derivation: First released in Issue 6. Derived from the Commands and Utilities, Issue 5
(XCU5).

Issue 7: This reference page is clarified with respect to macros and symbolic constants.

<netinet/tcp.h>

Purpose: Definitions for the Internet Transmission Control Protocol (TCP).

Synopsis: #include <netinet/tcp.h>

Derivation: First released in Issue 6. Derived from the Commands and Utilities, Issue 5
(XCU5).

Issue 7: This reference page is clarified with respect to macros and symbolic constants.

250 A Source Book from The Open Group (2010)

Headers Migration Headers

<nl_types.h>

Purpose: Data types.

Synopsis: #include <nl_types.h>

Derivation: First released in Issue 2.

Issue 7: The <nl_types.h> header is moved from the XSI option to the Base.

This reference page is clarified with respect to macros and symbolic constants.

<poll.h>

Purpose: Definitions for the poll() function.

Synopsis: #include <poll.h>

Derivation: First released in Issue 4, Version 2.

Issue 7: The <poll.h> header is moved from the XSI option to the Base.

<pthread.h>

Purpose: Threads.

Synopsis: #include <pthread.h>

Derivation: First released in Issue 5. Included for alignment with the POSIX Threads
Extension.

Issue 7: SD5-XBD-ERN-55 is applied, adding the restrict keyword to the
pthread_mutex_timedlock() function prototype so that it matches the definition in
XSH.

Austin Group Interpretation 1003.1-2001 #048 is applied, reinstating the
PTHREAD_RWLOCK_INITIALIZER symbol.

The <pthread.h> header is moved from the Threads option to the Base.

The PTHREAD_MUTEX_NORMAL, PTHREAD_MUTEX_ERRORCHECK,
PTHREAD_MUTEX_RECURSIVE, and PTHREAD_MUTEX_DEFAULT extended
mutex types are moved from the XSI option to the Base.

The PTHREAD_MUTEX_ROBUST and PTHREAD_MUTEX_STALLED symbols
and the pthread_mutex_consistent(), pthread_mutexattr_getrobust(), and
pthread_mutexattr_setrobust() functions are added from The Open Group Technical
Standard, 2006, Extended API Set Part 2.

Functionality relating to the Thread Priority Protection and Thread Priority
Inheritance options is changed to be Non-Robust Mutex or Robust Mutex Priority
Protection and Non-Robust Mutex or Robust Mutex Priority Inheritance,
respectively.

This reference page is clarified with respect to macros and symbolic constants.

The Authorized Guide to the Single UNIX Specification, Version 4 251

Headers Headers Migration

<pwd.h>

Purpose: Password structure.

Synopsis: #include <pwd.h>

Derivation: First released in Issue 1.

Issue 7: SD5-XBD-ERN-56 is applied, adding a reference to <sys/types.h> for the size_t
type.

<regex.h>

Purpose: Regular expression matching types.

Synopsis: #include <regex.h>

Derivation: First released in Issue 4.

Originally derived from the .

Issue 7: SD5-XBD-ERN-60 is applied, removing the requirement that the type regoff_t can
hold the largest value that can be stored in type off_t, and adding the requirement
that the type regoff_t can hold the largest value that can be stored in type
ptrdiff_t.

The obsolescent REG_ENOSYS constant is removed.

This reference page is clarified with respect to macros and symbolic constants.

<sched.h>

Purpose: Execution scheduling.

Synopsis: #include <sched.h>

Derivation: First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

Issue 7: Austin Group Interpretation 1003.1-2001 #064 is applied, correcting the option
markings.

The <sched.h> header is moved from the Threads option to the Base.

Definitions for the pid_t and time_t types and the timespec structure are added.

<search.h>

Purpose: Search tables.

XSI Synopsis: #include <search.h>

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

252 A Source Book from The Open Group (2010)

Headers Migration Headers

<semaphore.h>

Purpose: Semaphores.

Synopsis: #include <semaphore.h>

Derivation: First released in Issue 5. Included for alignment with the POSIX Realtime
Extension.

Issue 7: SD5-XBD-ERN-57 is applied, allowing the header to make visible symbols from
the <time.h> header.

The <semaphore.h> header is moved from the Semaphores option to the Base.

This reference page is clarified with respect to macros and symbolic constants.

<setjmp.h>

Purpose: Stack environment declarations.

Synopsis: #include <setjmp.h>

Derivation: First released in Issue 1.

Issue 7: No functional changes are made in this issue.

<signal.h>

Purpose: Signals.

Synopsis: #include <signal.h>

Derivation: First released in Issue 1.

Issue 7: SD5-XBD-ERN-39 is applied, removing the sigstack structure which should have
been removed at the same time as the LEGACY sigstack() function.

SD5-XBD-ERN-56 is applied, adding a reference to <sys/types.h> for the size_t
type.

Austin Group Interpretation 1003.1-2001 #034 is applied, moving SIGPOLL from
the XSI option to the XSI STREAMS option.

The psiginfo() and psignal() functions are added from The Open Group Technical
Standard, 2006, Extended API Set Part 1.

Functionality relating to the XSI STREAMS option is marked obsolescent.

The SA_RESETHAND, SA_RESTART, SA_NOCLDWAIT, and SA_NODEFER
constants are moved from the XSI option to the Base.

Functionality relating to the Realtime Signals Extension option is moved to the
Base.

This reference page is clarified with respect to macros and symbolic constants, and
type and structure definitions from other headers are added.

The descriptions of SIGRTMIN and SIGRTMAX are updated to clarify that they
expand to positive integer expressions with type int, but which need not be
constant expressions.

The APPLICATION USAGE section is updated to describe the conditions under
which the si_pid and si_uid members of siginfo_t are required to be valid.

The Authorized Guide to the Single UNIX Specification, Version 4 253

Headers Headers Migration

<spawn.h>

Purpose: Spawn (ADVANCED REALTIME).

SPN Synopsis: #include <spawn.h>

Derivation: First released in Issue 6. Included for alignment with IEEE Std 1003.1d-1999.

Issue 7: This reference page is clarified with respect to macros and symbolic constants, and
type and structure definitions from other headers are added.

<stdarg.h>

Purpose: Handle variable argument list.

Synopsis: #include <stdarg.h>

Derivation: First released in Issue 4. Derived from the IEEE Std 1003.1b-1993.

Issue 7: No functional changes are made in this issue.

<stdbool.h>

Purpose: Boolean type and values.

Synopsis: #include <stdbool.h>

Derivation: First released in Issue 6. Included for alignment with the ISO/IEC 9899: 1999
standard.

Issue 7: No functional changes are made in this issue.

<stddef.h>

Purpose: Standard type definitions.

Synopsis: #include <stddef.h>

Derivation: First released in Issue 4. Derived from the IEEE Std 1003.1b-1993.

Issue 7: This reference page is clarified with respect to macros and symbolic constants.

SD5-XBD-ERN-53 is applied, updating the definition of wchar_t to align with
ISO/IEC 9899: 1999 standard, Technical Corrigendum 3 in relation to the
__STDC_MB_MIGHT_NEQ_WC__ indicator macro.

<stdint.h>

Purpose: Integer types.

Synopsis: #include <stdint.h>

Derivation: First released in Issue 6. Included for alignment with the ISO/IEC 9899: 1999
standard.

Issue 7: ISO/IEC 9899: 1999 standard, Technical Corrigendum 3 #40 is applied, requiring
the argument to the INT*_C() macros to be an unsuffixed integer constant.

SD5-XBD-ERN-67 is applied, updating the RATIONALE to clarify that
{SCHAR_MIN} has the value −128.

254 A Source Book from The Open Group (2010)

Headers Migration Headers

<stdio.h>

Purpose: Standard buffered input/output.

Synopsis: #include <stdio.h>

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: Austin Group Interpretation 1003.1-2001 #172 is applied, adding rationale about a
conflict for the definition of {TMP_MAX} with the IEEE Std 1003.1i-1995 and the
related ISO C defect report.

SD5-XBD-ERN-99 is applied, adding APPLICATION USAGE about
{FOPEN_MAX} and the use of file descriptors not associated with streams.

The dprintf(), fmemopen(), getdelim(), getline(), open_memstream(), and vdprintf()
functions are added from The Open Group Technical Standard, 2006, Extended
API Set Part 1.

The renameat() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 2.

The gets(), tmpnam(), and tempnam() functions and the L_tmpnam macro are
marked obsolescent.

This reference page is clarified with respect to macros and symbolic constants, and
a reference to <sys/types.h> for the off_t type is added.

<stdlib.h>

Purpose: Standard library definitions.

Synopsis: #include <stdlib.h>

Derivation: First released in Issue 3.

Issue 7: The LEGACY functions are removed.

The mkdtemp() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 1.

The rand_r() function is marked obsolescent.

This reference page is clarified with respect to macros and symbolic constants.

The type of the first argument to setstate() is changed from const char * to char *.

<string.h>

Purpose: String operations.

Synopsis: #include <string.h>

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: SD5-XBD-ERN-15 is applied, correcting the prototype for the strerror_r() function.

The stpcpy(), stpncpy(), strndup(), strnlen(), and strsignal() functions are added
from The Open Group Technical Standard, 2006, Extended API Set Part 1.

The strcoll_l(), strerror_l(), and strxfrm_l() functions are added from The Open
Group Technical Standard, 2006, Extended API Set Part 4.

This reference page is clarified with respect to macros and symbolic constants, and
a reference to <locale.h> for the locale_t type is added.

The Authorized Guide to the Single UNIX Specification, Version 4 255

Headers Headers Migration

<strings.h>

Purpose: String operations.

Synopsis: #include <strings.h>

Derivation: First released in Issue 4, Version 2.

Issue 7: SD5-XBD-ERN-56 is applied, adding a reference to <sys/types.h> for the size_t
type.

The LEGACY functions are removed.

The <strings.h> header is moved from the XSI option to the Base.

The strcasecmp_l() and strncasecmp_l() functions are added from The Open Group
Technical Standard, 2006, Extended API Set Part 4.

A reference to <locale.h> for the locale_t type is added.

<stropts.h>

Purpose: STREAMS interface (STREAMS).

OB XSR Synopsis: #include <stropts.h>

Derivation: First released in Issue 4, Version 2.

Issue 7: SD5-XBD-ERN-87 is applied, correcting an error in the strrecvfd structure.

The <stropts.h> header is marked obsolescent.

This reference page is clarified with respect to macros and symbolic constants.

<sys/ipc.h>

Purpose: XSI interprocess communication access structure.

XSI Synopsis: #include <sys/ipc.h>

Derivation: First released in Issue 2. Derived from System V Release 2.0.

Issue 7: This reference page is clarified with respect to macros and symbolic constants.

<syslog.h>

Purpose: Definitions for system error logging.

XSI Synopsis: #include <syslog.h>

Derivation: First released in Issue 4, Version 2.

Issue 7: This reference page is clarified with respect to macros and symbolic constants.

<sys/mman.h>

Purpose: Memory management declarations.

Synopsis: #include <sys/mman.h>

Derivation: First released in Issue 4, Version 2.

Issue 7: Functionality relating to the Memory Protection and Memory Mapped Files
options is moved to the Base.

This reference page is clarified with respect to macros and symbolic constants.

256 A Source Book from The Open Group (2010)

Headers Migration Headers

<sys/msg.h>

Purpose: XSI message queue structures.

XSI Synopsis: #include <sys/msg.h>

Derivation: First released in Issue 2. Derived from System V Release 2.0.

Issue 7: Austin Group Interpretation 1003.1-2001 #179 is applied, clarifying that everything
from <sys/ipc.h> is made visible by <sys/msg.h>.

This reference page is clarified with respect to macros and symbolic constants.

<sys/resource.h>

Purpose: Definitions for XSI resource operations.

XSI Synopsis: #include <sys/resource.h>

Derivation: First released in Issue 4, Version 2.

Issue 7: This reference page is clarified with respect to macros and symbolic constants.

<sys/select.h>

Purpose: Select types.

Synopsis: #include <sys/select.h>

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1g-2000.

Issue 7: This reference page is clarified with respect to macros and symbolic constants.

<sys/sem.h>

Purpose: XSI semaphore facility.

XSI Synopsis: #include <sys/sem.h>

Derivation: First released in Issue 2. Derived from System V Release 2.0.

Issue 7: Austin Group Interpretation 1003.1-2001 #179 is applied, clarifying that everything
from <sys/ipc.h> is made visible by <sys/sem.h>.

This reference page is clarified with respect to macros and symbolic constants.

<sys/shm.h>

Purpose: XSI shared memory facility.

XSI Synopsis: #include <sys/shm.h>

Derivation: First released in Issue 2. Derived from System V Release 2.0.

Issue 7: Austin Group Interpretation 1003.1-2001 #179 is applied, clarifying that everything
from <sys/ipc.h> is made visible by <sys/shm.h>.

This reference page is clarified with respect to macros and symbolic constants.

The Authorized Guide to the Single UNIX Specification, Version 4 257

Headers Headers Migration

<sys/socket.h>

Purpose: Main sockets header.

Synopsis: #include <sys/socket.h>

Derivation: First released in Issue 6. Derived from the Commands and Utilities, Issue 5
(XCU5).

Issue 7: SD5-XBD-ERN-56 is applied, adding a reference to <sys/types.h> for the ssize_t
type.

The MSG_NOSIGNAL symbolic constant is added from The Open Group
Technical Standard, 2006, Extended API Set Part 2.

This reference page is clarified with respect to macros and symbolic constants, and
a reference to <sys/types.h> for the size_t type is added.

<sys/stat.h>

Purpose: Data returned by the stat() function.

Synopsis: #include <sys/stat.h>

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: SD5-XSH-ERN-161 is applied, updating the DESCRIPTION to clarify that the
descriptions of the interfaces should be consulted in order to determine which
structure members have meaningful values.

The fchmodat(), fstatat(), mkdirat(), mkfifoat(), mknodat(), and utimensat() functions
are added from The Open Group Technical Standard, 2006, Extended API Set Part
2.

This reference page is clarified with respect to macros and symbolic constants.

Changes are made related to support for finegrained timestamps, and the
futimens() function and the UTIME_NOW and UTIME_OMIT symbolic constants
are added.

<sys/statvfs.h>

Purpose: VFS File System information structure.

Synopsis: #include <sys/statvfs.h>

Derivation: First released in Issue 4, Version 2.

Issue 7: The <sys/statvfs.h> header is moved from the XSI option to the Base.

This reference page is clarified with respect to macros and symbolic constants.

<sys/time.h>

Purpose: Time types.

XSI Synopsis: #include <sys/time.h>

Derivation: First released in Issue 4, Version 2.

Issue 7: This reference page is clarified with respect to macros and symbolic constants.

258 A Source Book from The Open Group (2010)

Headers Migration Headers

<sys/times.h>

Purpose: File access and modification times structure.

Synopsis: #include <sys/times.h>

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

<sys/types.h>

Purpose: Data types.

Synopsis: #include <sys/types.h>

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: Austin Group Interpretation 1003.1-2001 #033 is applied, requiring key_t to be an
arithmetic type.

The Trace option types are marked obsolescent.

The clock_t and id_t types are moved from the XSI option to the Base.

Functionality relating to the Barriers, Spin Locks, Timers, and Threads options is
moved to the Base.

<sys/uio.h>

Purpose: Definitions for vector I/O operations.

XSI Synopsis: #include <sys/uio.h>

Derivation: First released in Issue 4, Version 2.

Issue 7: No functional changes are made in this issue.

<sys/un.h>

Purpose: Definitions for UNIX domain sockets.

Synopsis: #include <sys/un.h>

Derivation: First released in Issue 6. Derived from the Commands and Utilities, Issue 5
(XCU5).

Issue 7: The value for {_POSIX_PATH_MAX} stated in APPLICATION USAGE is updated
to 256.

<sys/utsname.h>

Purpose: System name structure.

Synopsis: #include <sys/utsname.h>

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: No functional changes are made in this issue.

The Authorized Guide to the Single UNIX Specification, Version 4 259

Headers Headers Migration

<sys/wait.h>

Purpose: Declarations for waiting.

Synopsis: #include <sys/wait.h>

Derivation: First released in Issue 3.

Included for alignment with the IEEE Std 1003.1-1988 (POSIX.1).

Issue 7: The waitid() function and symbolic constants for its options argument are moved to
the Base.

The description of the WNOHANG constant is clarified.

<tar.h>

Purpose: Extended tar definitions.

Synopsis: #include <tar.h>

Derivation: First released in Issue 3. Derived from the IEEE Std 1003.1-1988 (POSIX.1).

Issue 7: This reference page is clarified with respect to macros and symbolic constants.

<termios.h>

Purpose: Define values for termios.

Synopsis: #include <termios.h>

Derivation: First released in Issue 3.

Included for alignment with the .

Issue 7: Austin Group Interpretation 1003.1-2001 #144 is applied, moving functionality
relating to the IXANY symbol from the XSI option to the Base.

This reference page is clarified with respect to macros and symbolic constants, and
a reference to <sys/types.h> for the pid_t type is added.

<tgmath.h>

Purpose: Type-generic macros.

Synopsis: #include <tgmath.h>

Derivation: First released in Issue 6. Included for alignment with the ISO/IEC 9899: 1999
standard.

Issue 7: Austin Group Interpretation 1003.1-2001 #184 is applied, clarifying the functions
for which a corresponding type-generic macro exists with the same name as the
function.

<time.h>

Purpose: Time types.

Synopsis: #include <time.h>

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: The strftime_l() function is added from The Open Group Technical Standard, 2006,
Extended API Set Part 4.

260 A Source Book from The Open Group (2010)

Headers Migration Headers

Functionality relating to the Timers option is moved to the Base.

This reference page is clarified with respect to macros and symbolic constants, and
type and structure definitions from other headers are added.

The description of getdate_err is expanded to state that it is unspecified whether
getdate_err is a macro or an identifier declared with external linkage, and whether
or not it is a modifiable lvalue.

<trace.h>

Purpose: Tracing.

OB TRC Synopsis: #include <trace.h>

Derivation: First released in Issue 6. Derived from IEEE Std 1003.1q-2000.

Issue 7: SD5-XBD-ERN-56 is applied, adding a reference to <sys/types.h> for the size_t
type.

The <trace.h> header is marked obsolescent.

This reference page is clarified with respect to macros and symbolic constants.

<ulimit.h>

Purpose: Ulimit commands.

OB XSI Synopsis: #include <ulimit.h>

Derivation: First released in Issue 3.

Issue 7: The <ulimit.h> header is marked obsolescent.

<unistd.h>

Purpose: Standard symbolic constants and types.

Synopsis: #include <unistd.h>

Derivation: First released in Issue 1. Derived from Issue 1 of the SVID.

Issue 7: Austin Group Interpretation 1003.1-2001 #026 is applied, clarifying the meanings
of the values −1, 0, and greater than 0 for constants for Options and Option
Groups, and making an undefined constant mean the same as the value −1.

Austin Group Interpretation 1003.1-2001 #047 is applied, adding the _CS_V7_ENV
constant.

Austin Group Interpretation 1003.1-2001 #166 is applied to permit an additional
compiler flag to enable threads.

Austin Group Interpretation 1003.1-2001 #178 is applied, clarifying the values
allowed for _POSIX2_CHAR_TERM.

SD5-XBD-ERN-41 is applied, adding the _POSIX2_SYMLINKS constant.

SD5-XBD-ERN-77 is applied, moving _POSIX_VDISABLE out of Constants for
Options and Option Groups, since its value does not follow the convention for
those constants.

Symbols to support the UUCP Utilities option are added.

The variables for the supported programming environments are updated to be V7.

The Authorized Guide to the Single UNIX Specification, Version 4 261

Headers Headers Migration

The LEGACY and obsolescent symbols are removed.

The faccessat(), fchownat(), fexecve(), linkat(), readlinkat(), symlinkat(), and
unlinkat() functions are added from The Open Group Technical Standard, 2006,
Extended API Set Part 2.

The _POSIX_TRACE* constants from the Trace option are marked obsolescent.

The _POSIX2_PBS* constants from the Batch Environment Services and Utilities
option are marked obsolescent.

Functionality relating to the Asynchronous Input and Output, Barriers, Clock
Selection, Memory Mapped Files, Memory Protection, Realtime Signals Extension,
Semaphores, Spin Locks, Threads, Timeouts, and Timers options is moved to the
Base.

Functionality relating to the Thread Priority Protection and Thread Priority
Inheritance options is changed to be Non-Robust Mutex or Robust Mutex Priority
Protection and Non-Robust Mutex or Robust Mutex Priority Inheritance,
respectively.

The following symbolic constants are added:

_SC_THREAD_ROBUST_PRIO_INHERIT
_SC_THREAD_ROBUST_PRIO_PROTECT

This reference page is clarified with respect to macros and symbolic constants.

Changes are made related to support for finegrained timestamps.

<utime.h>

Purpose: Access and modification times structure.

OB Synopsis: #include <utime.h>

Derivation: First released in Issue 3.

Issue 7: The <utime.h> header is marked obsolescent.

<utmpx.h>

Purpose: User accounting database definitions.

XSI Synopsis: #include <utmpx.h>

Derivation: First released in Issue 4, Version 2.

Issue 7: No functional changes are made in this issue.

<wchar.h>

Purpose: Wide-character handling.

Synopsis: #include <wchar.h>

Derivation: First released in Issue 4.

Issue 7: No functional changes are made in this issue.

262 A Source Book from The Open Group (2010)

Headers Migration Headers

<wctype.h>

Purpose: Wide-character classification and mapping utilities.

Synopsis: #include <wctype.h>

Derivation: First released in Issue 5. Derived from the .

Issue 7: The *_l() functions are added from The Open Group Technical Standard, 2006,
Extended API Set Part 4.

This reference page is clarified with respect to macros and symbolic constants.

<wordexp.h>

Purpose: Word-expansion types.

Synopsis: #include <wordexp.h>

Derivation: First released in Issue 4. Derived from the .

Issue 7: The obsolescent WRDE_NOSYS constant is removed.

This reference page is clarified with respect to macros and symbolic constants.

The Authorized Guide to the Single UNIX Specification, Version 4 263

Headers Migration

264 A Source Book from The Open Group (2010)

Chapter 14

ISO C Migration

This chapter is by Finnbarr P. Murphy. At the time of writing, Finnbarr was a software engineer in the
Business Critical Systems Group (BCSG) at Compaq Computer Corporation in Nashua, New Hampshire.

14.1 Introduction

The original ISO/IEC C language programming standard (the) was adopted by the
International Organization for Standardization (ISO) and the International Electotechnical
Commission (IEC) in 1990. Subsequently, two technical corrigenda (TC1 and TC2) were
approved together with the normative , Multibyte Support Extension.1

At the end of 1993, there was general agreement that work should start on the next revision of
the standard. The revised standard (C99) was sent for FCD ballot in August 1998, and adopted
by ISO/IEC in 1999 as the ISO/IEC 9899: 1999 standard.

This chapter is intended to provide the reader with a good, but not exhaustive, overview of the
differences between the two revisions of the standard. Thus the reader is strongly advised to
reference the ISO/IEC 9899: 1999 standard for specific details.

14.2 Language Changes

A significant number of changes occurred in the standard, including new keywords and types,
type qualifiers, better floating-point support, and support for complex numbers.

14.2.1 New Keywords

The following new keywords were defined:

• inline

• restrict

• _Bool

• _Complex

• _Imaginary

• long long

1. Information about the ISO C Working Group (JTC1/SC22/WG14) can be found at:wwwold.dkuug.dk/JTC1/SC22/WG14/.

The Authorized Guide to the Single UNIX Specification, Version 4 265

Language Changes ISO C Migration

14.2.2 New Types

Two new types were added:

• _Bool

• long long

The long long type is an integer type with at least 64 bits of precision.

Note: In some programming models such as LP64 and ILP64, long long and long are equivalent. In
the others—for example, LLP64—long long is larger than long.

14.2.3 Type Qualifiers

Type qualifiers are now idempotent. If a type qualifier appears more than once (either directly or
indirectly) in a type specification, it is as if it appeared only once. Thus const const int fpm; and
const int fpm; are equivalent.

restrict is a new type qualifier which enables programs to be written so that compilers can
produce significantly faster executables. It is intended to be used only with pointers. Objects
referenced through a restrict-qualified pointer are special in that all references to the object must
directly or indirectly use the value of the restrict-qualified pointer. It is intended to facilitate
better alias analysis by compilers. In the absence of this qualifier, other pointers can alias the
object and prevent compiler optimizations since a compiler may not be able to determine that
different pointers are being used to reference different objects. Note that a restricted pointer and
a non-restricted pointer can be aliases.

A number of function definitions were modified to take advantage of the restrict qualifier. A
typical example is the fopen() function which was changed from:

FILE *fopen(const char *filename, const char *mode);

to:

FILE *fopen(const char *restrict filename,
const char *restrict mode);

Changed functions include:

fgetpos()
fgets()
fgetws()
fopen()
fputs()
fread()

freopen()
fwprintf()
fwrite()
fwscanf()
mbstowcs()
mbtowc()

memcpy()
setbuf()
setvbuf()
strcat()
strcpy()
strncat()

strncpy()
strxfrm()
swprintf()
swscanf()
vfwprintf()
vswprintf()

vwprintf()
wcstod()
wcstol()
wcstombs()
wcstoul()
wprintf()

14.2.4 Boolean

The standard now supports a boolean type _Bool which is an integer type which can hold either
0 or 1.

The header <stdbool.h> also defines the macro bool which expands to _Bool, true which
expands to the integer constant 1, and false which expands to the integer constant 0.

266 A Source Book from The Open Group (2010)

ISO C Migration Language Changes

14.2.5 Universal Character Names

Prior to this revision of the standard, ‘‘native’’ characters, in the form of multibyte and wide
characters, could be used in string literals and character constants, but not as part of an
identifier.

This standard introduced the concept of a universal character name (UCN) that may be used in
identifiers, character constants, and string literals to designate characters that are not in the basic
character set.

The two forms of a UCN are:

\unnnn where nnnn is hex-quad
\Unnnnnnnn where nnnnnnnn is hex-quad hex-quad

A hex-quad consists of 4 hexadecimal digits.

The UNC \Unnnnnnnn designates the character whose eight-digit short identifier as specified
by the ISO/IEC 10646-1: 2000 standard is nnnnnnnn.

Similarly, the UCN \unnnn can be used to designate a given character whose four-digit short
identifier as specified by the ISO/IEC 10646-1: 2000 standard is nnnn (and whose eight-digit
short identifier is 0000nnnn).

There are a number of disallowed characters; that is, those in the basic character set, and code
positions reserved in the ISO/IEC 10646-1: 2000 standard for control and DELETE characters
and UTF-16.

Note: A strictly conforming program may use only the extended characters listed in Annex I
(Universal Character Names for Identifiers) and may not begin an identifier with an extended
digit. Also, use of native characters in comments has always been strictly conforming, though
what happens when such a program is printed in a different locale is unspecified.

14.2.6 inline

The inline keyword is intended to provide users with a portable way to suggest to
implementations that inlining a function might result in program optimizations.

It is a function-specifier that can be used only in function declarations. It was adopted from C++
but extended in such a way that it can be implemented with existing linker technology. The
translation unit that contains the definition of an inline function is the unit that provides the
external definition for the function. If a function is declared inline in one translation unit, it need
not be declared inline in every other translation unit.

14.2.7 Predefined Identifiers

Predefined identifiers are variables that have block scope.

The standard defined one predefined identifier _ _func_ _ which is declared implicitly by the
compiler as if, immediately following the opening brace of each function definition, the
following declaration was included in the source code:

static const char __func__[] = "function-name";

where function-name is the name of the lexically-enclosing function. This enables a function name
to be obtained at runtime.

The assert() macro now includes the identifier _ _func_ _ in the output to stderr:

The Authorized Guide to the Single UNIX Specification, Version 4 267

Language Changes ISO C Migration

void assert(scalar expression);

Note that the parameter type of the assert() macro was also changed from int to scalar.

14.2.8 Compound Literals

Compound literals (also known as anonymous aggregates) provide a mechanism for specifying
constants of aggregate or union type. This eliminates the requirement for temporary variables
when an aggregate or union value may only be needed once. Compound literals are primary
expressions which can also be combined with designated initializers to form an even more
convenient aggregate or union constant notation.

Compound literals are created using the notation:

(type-name) { initializer-list }

For example:

int *ap = (int a[]) {1. 2, 3 };

Note that a trailing comma before the closing brace is permitted.

14.2.9 Designated Initializers

Designated initializers provide a mechanism for initializing aggregates such as sparse arrays, a
common requirement in numerical programming. This mechanism also allows initialization of
sparse structures and initialization of unions via any member, regardless of whether or not it is
the first member.

Initializers have a named notation for initializing members. For array elements, the element is
designated by [const-expression], for struct and union members by a dot member-name notation.

For example:

struct s { int a; int b; };
struct s mystruct = {.b = 2}; // initialize member b
struct {int a[3], b[3]} w[] = { [0].a = {1}, [1].b = 2 };

If an initializer is present, any members not explicitly set are zeroed out. Initializers for auto
aggregates can be non-constant expressions.

14.3 Decimal Integer Constants

The default type of a decimal integer constant is either int, long, or long long (previously int,
long, and unsigned long), depending on which type is large enough to hold the value without
overflow.

The standard added LL to specify long long, and ULL to specify unsigned long long.

268 A Source Book from The Open Group (2010)

ISO C Migration Decimal Integer Constants

14.3.1 String Literals

The standard defines a number of macros as expanding into character string literals that are
frequently needed as wide strings.

One example is the format specifier macros in <inttypes.h>. Rather than specifying two forms
of each macro, one character string literal and one wide string literal, the decision was made to
define the result of concatenating a character string literal and a wide string literal as a wide
string literal.

14.4 Implicit Declarations

Implicit declaration of functions is no longer permitted by the standard. There must be a least
one type specifier otherwise a diagnostic is issued. However, after issuing the diagnostic, an
implementation may choose to assume an implicit declaration and continue translation in order
to support existing source code.

For example, the declaration fpm(); was valid in previous revisions of the standard (equivalent
to int fpm();) but is now invalid.

14.4.1 sizeof

With the addition of variable length arrays, the sizeof operator is a constant expression only if the
type of the operand is not a variable length array type.

Note: It is still possible to determine the number of elements in a variable length array vla with
sizeof (vla)/sizeof (vla[0]).

14.4.2 Multiplicative Operators

In previous revisions of the standard, division of integers involving negative operands could
round upward or downward in an implementation-defined manner. The standard now
mandates that, as in Fortran, the result always truncates toward zero.

For example, both of the following truncate towards zero:

-22 / 7 = -3
-22 % 7 = -1

This was done to facilitate porting of code from Fortran to C.

14.4.3 Enumeration Specifiers

A common extension to many C implementations is to allow a trailing comma after the list of
enumeration constants. The standard now permits this.

The Authorized Guide to the Single UNIX Specification, Version 4 269

Variable Length Array ISO C Migration

14.5 Variable Length Array

A new array type, called a variable length array type, was added to the standard. The number of
elements specified in the declaration of a variable length array type is not specified by the source
code; rather it is a computed value determined at runtime.

Multi-dimensional variable-length arrays are permitted.

Some things cannot be declared as a variable length array type, including:

• File scope identifiers

• Arrays declared using either static or extern storage class specifiers

• Structure and union members

The rationale behind this new array type was that some standard method to support runtime
array sizing was considered crucial for C’s acceptance in the numerical computing world. Before
this revision of the standard, the size expression was required to be an integer constant
expression.

14.5.1 Array Declarations

The static storage class specifier and the type-qualifiers restrict, const, or volatile can now be
used inside the square brackets of an array type declaration, but only in the outermost array
type derivation of a function parameter.

int foo(const int a[static 10]);

In the above example, the static keyword will guarantee that the pointer to the array a is not
NULL, and points to an object of the appropriate type.

14.5.2 Array Type Compatibility

Array type compatibility was extended so that variable length arrays are compatible with both
an array of known constant size and an array with an incomplete type.

14.5.3 Incomplete Array Structure Members

The last member of a structure with more than one member can now be an incomplete array
type. This incomplete member is called a flexible array member.

Consider the following example

struct s { int n;
double d[];

};

size_t sz = sizeof(struct s);
struct s *sp = malloc(sz + 10);

The structure pointer sp behaves as if the structure s had been declared as

struct s { int n;
double d[10];

};

The size of the structure is equal to the offset of the last element of an otherwise identical

270 A Source Book from The Open Group (2010)

ISO C Migration Variable Length Array

structure that replaces the flexible array member with an array of unspecified length. When a
’.’ or a ’->’ operator point to a structure with a flexible array member and the right operand
names that member, it behaves as if that member were replaced with the longest array with the
same element type that would not make the structure larger than the object being accessed.

The offset of the array remains that of the flexible array member, even if this would differ from
that of the replacement array. If this array would have no elements, it behaves as if it had one
element. However, behavior is undefined if any attempt is made to access that element or to
generate a pointer one past it.

14.5.4 Blocks

A common coding practice is to always use compound statements for every selection and
iteration statement to guard against inadvertent problems when changes are made to the source
code.

Because this can lead to surprising behavior in connection with certain uses of compound
literals, the concept of a block was expanded in this revision of the standard.

As in C++, all selection and iteration statements, and their associated substatements, are now
defined to be blocks, even if they are not also compound statements. If compound literals are
defined in selection or iteration statements, their lifetimes are limited to the implied enclosing
block.

14.5.5 The for Statement

The standard now permits loop counter variables as part of a for statement. Such a variable is in
a new scope (so it does not affect any other variable of the same name), is destroyed at the end of
the loop, and must have auto or register storage class.

for (int i = 0; i < 10; i++)
printf("Loop number: %d\n", i);

14.5.6 errno

For underflow, errno is no longer required to be set to [EDOM] or [ERANGE].

14.6 Comments

Support for //-style comments was added due to their utility and widespread existing practice,
especially in dual C/C++ translators. This is a quiet change which could cause different
semantics between this standard and C89. Consider the following example:

a = b //*divisor:*/ f
+ e;

According to this standard this is the same as:

a = b + e;

but in previous revisions of the standard it was the same as:

a = b / f + e;

The Authorized Guide to the Single UNIX Specification, Version 4 271

Comments ISO C Migration

14.6.1 Hexadecimal Floating-Point Constants

Because hexadecimal notation more clearly expresses the significance of floating constants, the
standard now supports hexadecimal floating-point constants.

The binary-exponent part is required, instead of being optional as it is for decimal notation, to
avoid ambiguity resulting from an ’f’ suffix being mistaken as a hexadecimal digit. The
exponent indicates the power of 2 by which the significant part is to be scaled.

14.6.2 Predefined Macros

New predefined macros include:

_ _STDC_VERSION_ _ Defined to be 199901L to indicate the current revision of the
standard.

_ _STDC_HOSTED_ _ Defined as 1 if the implementation is hosted; otherwise, 0.

14.6.3 Source File Inclusion

The number of significant characters in header and source file names was raised from six to
eight, and digits are now allowed.

14.6.4 Translation-Time Arithmetic

The standard now mandates that translation-time arithmetic be done using intmax_t or
uintmax_t, which must comprise at least 64 bits and must match the execution environment.

Previously, a translator was permitted to evaluate expressions using the long integer or
unsigned long integer arithmetic native to the translation environment.

14.6.5 Minimum Maximum Line Length

The minimum maximum line length was increased from 254 to 4095.

14.6.6 Case-Sensitive Identifiers

All identifiers are now case-sensitive. In previous revisions of the standard, it was
implementation-defined whether an implementation ignored the case of external identifiers.

14.6.7 #line Directive

This directive now allows the specification of a line number up to 2**31−1. Previously the limit
was 32 767.

272 A Source Book from The Open Group (2010)

ISO C Migration Comments

14.6.8 Empty Argument Macros

Empty arguments are now explicitly allowed. In previous revisions of the standard, this resulted
in undefined behavior. Stringification (# operator) of an empty argument yields the empty
string, concatenation (## operator) of an empty argument with a non-empty argument produces
the non-empty argument, and concatenation of two empty arguments produces nothing.

14.6.9 Pragmas

Some pragma directives have been standardized. Directives whose first preprocessing token is
STDC are reserved for standardized directives.

As an alternative syntax for a pragma directive, the preprocessing operator _Pragma is specified.
This has the advantage that it can be used in a macro replacement list.

14.6.10 Translation Limits

A number of the program translation limits were significantly increased.

The number of significant initial characters in an internal identifier or a macro name was
increased from 31 to 63.

The number of significant characters in an external identifier has increased from 6 to 31 case-
sensitive characters.

Note that each universal character name (UCN) specifying a short identifier of 0000FFFF or less
is considered to be 6 characters, while a long UCN counts as 10 characters.

While an implementation is not obliged to remember more than the first 63 characters of an
identifier with internal linkage, or the first 31 characters of an identifier with external linkage,
the programmer is effectively prohibited from intentionally creating two different identifiers that
are the same within the appropriate length.

The minimum maximum limit of cases in a switch statement was increased to 1 023.

14.6.11 Token Pasting

The standard replaced non-digit with identifier-non-digit in the grammar to allow the token
pasting operator, ##, to work as expected with characters which are not part of the basic
character set.

14.6.12 Variadic Macros

The standard extended the functionality of the punctuator "..." (ellipsis; denoting a variable
number of trailing arguments) to function-like macros. For replacement, the variable arguments
(including the separating commas) are ‘‘collected’’ into one single extra argument that can be
referenced as _ _VA_ARGS_ _ within the macro’s replacement list.

For example:

#define MyLog(...) fprintf(stderr, __VA_ARGS__)

main()
{

int array_bound = 10;

The Authorized Guide to the Single UNIX Specification, Version 4 273

Comments ISO C Migration

int array_index = 11;
......
MyLog("ERROR: Index out of bound: %d %d\n", array_index,

array_bound);
......

}

There must be at least one argument to match the ellipsis. This requirement avoids problems
that might occur when the trailing arguments are included in a list of arguments to another
macro or function.

14.6.13 va_copy()

In previous revisions of the standard, it was not possible to backtrack and examine one or more
arguments a second time when processing a variable argument list. The only way to do this was
to reprocess the variable argument list.

The va_copy() macro provides a mechanism for copying the va_list object used to represent
processing of the arguments. Calling the va_copy() macro exactly duplicates the va_list object.

Note: A separate call to the va_end() macro is required to remove the new va_list object.

14.7 Headers

The following new headers were added to the standard:

<complex.h> Defines a number of macros and functions for use with the three complex
arithmetic types defined in the standard.

<fenv.h> Defines a number of types, macros, and functions that can be used to test,
control, and access an implementation’s floating-point environment.

<inttypes.h> Defines a type and a number of macros and functions for manipulating
integers; <stdint.h> is a subset of this header.

<stdbool.h> Defines a number of macros for accessing the new Boolean type _Bool and
writing Boolean tests.

<tgmath.h> Defines a large number of type-generic macros that invoke the correct math
function from <math.h> or from <complex.h> depending upon their
argument types.

274 A Source Book from The Open Group (2010)

ISO C Migration Integer Types

14.8 Integer Types

The purpose of the <inttypes.h> header is to provide a set of integer types whose definitions are
consistent across platforms. Consistent use of these integer types should greatly increase the
portability of source code across platforms.

The header <stdint.h> is a subset of <inttypes.h> and may be more suitable for use in
freestanding environments, which might not support the formatted I/O functions. It declares
sets of integer types having specified widths and corresponding macros that specify limits of the
declared types and construct suitable constants.

The following categories of integer types are defined:

• Types having exact widths

• Types having at least certain specified widths

• Fastest types having at least certain specified widths

• Types wide enough to hold pointers to objects

• Types having greatest width

14.8.1 Exact-Width Integer Types

The typedef name intN_t designates a signed integer type with width N bits, no padding bits,
and a two’s complement representation. The typedef name uintN_t designates an unsigned
integer type with width N .

For example, int16_t is an unsigned integer type with a width of exactly 16 bits.

Exact-width types are optional. However, if an implementation provides integer types with
widths of 8, 16, 32, or 64 bits, it must define the corresponding typedef names.

14.8.2 Minimum-Width Integer Types

The typedef names int_leastN_t and uint_leastN_t, respectively, designate signed and unsigned
integer types with a width of at least N bits, such that no signed integer type with lesser size has
at least the specified width.

For example, uint_least16_t denotes an unsigned integer type with a width of at least 16 bits.

The following types are mandatory:

int_least8_t
int_least16_t

int_least32_t
int_least64_t

uint_least8_t
uint_least16_t

uint_least32_t
uint_least64_t

14.8.3 Fastest Minimum-Width Integer Types

The typedef names int_fastN_t and uint_fastN_t, respectively, designate the (usually) fastest
signed and unsigned integer types with a width of at least N bits.

The following types are mandatory:

int_fast8_t
int_fast16_t

int_fast32_t
int_fast64_t

uint_fast8_t
uint_fast16_t

uint_fast32_t
uint_fast64_t

The Authorized Guide to the Single UNIX Specification, Version 4 275

Integer Types ISO C Migration

14.8.4 Integer Types Capable of Holding Object Pointers

The optional intptr_t and uintptr_t types, respectively, designate a signed and unsigned integer
type with the property that any valid pointer to void can be converted to this type, then
converted back to a pointer to void and the result will compare equal to the original pointer.

14.8.5 Greatest-Width Integer Types

The intmax_t and uintmax_t types, respectively, designate a signed integer type capable of
representing any value of any signed integer type, and an unsigned integer type capable of
representing any value of any unsigned integer type.

For each type declared in <stdint.h> conversion macros, which expand to the correct format
specifiers, are defined for use with the formatted input/output functions such as fprintf() and
fscanf().

The fprintf() macros for signed integers are:

PRIdFASTN
PRIdLEASTN

PRIdMAX
PRIdN

PRIdPRT
PRIiFASTN

PRIiLEASTN
PRIiMAX

PRIiN
PRIiPRT

The PRId macros each expand to a string literal suitable for use as a d print conversion specifier,
plus any needed qualifiers, to convert values of the types int8_t, int16_t, int32_t, or int64_t,
respectively.

The PRIdLEAST macros each expand to a string literal suitable for use as a d print conversion
specifier, plus any needed qualifiers, to convert values of the types int_least8_t, int_least16_t,
int_least32_t, or int_least64_t, respectively.

The PRIdFAST macros each expand to a string literal suitable for use as a d print conversion
specifier, plus any needed qualifiers, to convert values of the types int_fast8_t, int_fast16_t,
int_fast32_t, or int_fast64_t, respectively.

The PRIdMAX macro expands to a string literal suitable for use as a d print conversion specifier,
plus any needed qualifiers, to convert values of the type intmax_t.

The PRIdPTR macro expands to a string literal suitable for use as a d print conversion specifier,
plus any needed qualifiers, to convert values of the type intptr_t.

The following example shows part of one possible implementation of the these macros in an
LP64 programming model:

#define PRId8 "hhd"
#define PRId16 "hd"
#define PRId32 "d"
#define PRId64 "ld"

#define PRIdFAST8 "hhd"
#define PRIdFAST16 "hd"
#define PRIdFAST32 "d"
#define PRIdFAST64 "ld"

#define PRIdLEAST8 "hhd"
#define PRIdLEAST16 "hd"
#define PRIdLEAST32 "d"
#define PRIdLEAST64 "ld"

Corresponding fprintf() macros are defined for unsigned integers (PRIo, PRIu, PRIx, and PRIX).

276 A Source Book from The Open Group (2010)

ISO C Migration Integer Types

For fscanf(), the macro names start with SCN instead of PRN. (SCNd and SCNi for signed
integers; SCNo, SCNu, SCNx for unsigned integers.)

A new structure type imaxdiv_t is defined. It is the type of structure returned by imaxdiv().

The following function computes the absolute value of an integer j:

intmax_t imaxabs(intmax_t j);

The following function computes both the quotient and remainder in a single operation:

imaxdiv_t imaxdiv(intmax_t numer, intmax_t denom);

The following functions are equivalent to the strtol family of functions, except that the initial
portion of the string is converted to intmax_t and uintmax_t representation, respectively:

intmax_t strtoimax(const char *restrict nptr,
char **restrict endptr, int base);

uintmax_t strtoumax(const char *restrict nptr,
char **restrict endptr, int base);

The following functions are equivalent to the wcstol family of functions, except that the initial
portion of the wide string is converted to intmax_t and uintmax_t representation, respectively:

intmax_t wcstoimax(const wchar_t *restrict nptr,
wchar_t **restrict endptr, int base);

uintmax_t wcstoumax(const wchar_t *restrict nptr,
wchar_t **restrict endptr, int base);

14.8.6 Limits of Specified-Width Integer Types

The standard specifies the minimum and maximum limits for all of the types declared in the
<stdint.h> header.

For example, the minimum value of an exact-width unsigned integer type is {UINTn_MAX},
where n is an unsigned decimal integer with no leading zeros, whose value is exactly 2*n−1.

14.8.7 Macros

The macros INTN_C() and UINTN_C() expand to a signed integer constant whose type and
value is int_leastN_t, and an unsigned integer constant whose type and value is uint_leastN_t,
respectively.

The macro INTMAX_C() expands to a integer constant whose type is intmax_t, and
UINTMAX_C() expands to an unsigned integer constant whose type uintmax_t.

The Authorized Guide to the Single UNIX Specification, Version 4 277

Complex Numbers ISO C Migration

14.9 Complex Numbers

Support for complex numbers and complex number arithmetic is new, and was added as part of
the effort to make the C language more attractive for general numerical programming. The
underlying implementation of the complex types is explicitly stated to be Cartesian, rather than
polar, for consistency with other programming languages. Thus values are interpreted as
radians, not degrees.

The header <complex.h> contains the macro definitions and function declarations that support
complex arithmetic.

Two new type specifiers were defined:

_Complex

_Imaginary (Only if an implementation supports a pure imaginary type.)

A new type qualifier complex (actually a macro which expands to _Complex) is used to denote a
number as being a complex number.

Three complex types were defined:

• float complex

• double complex

• long double complex

The corresponding real type is the type obtained by deleting the type qualifier complex from the
complex type name.

A complex type has the same representation and alignment requirements as an array type
containing exactly two elements of the corresponding real type; the first element is equal to the
real part, and the second element to the imaginary part, of the complex number.

There is no special syntax for constants; instead there is a new macro _Complex_I, which has a
complex value whose real part is zero and whose imaginary part is x. Note that
_Complex_I*_Complex_I has a value of −1, but the type of that value is complex.

The standard reserves the keyword _Imaginary for use as a type-specifier in conjunction with
the pure imaginary type. The macros imaginary and Imaginary_I are defined only if an
implementation supports a pure imaginary type. Such support is optional. See Annex G of the
standard for further details. If defined, they expand to _Imaginary and a constant expression of
type const float _Imaginary with the value of the imaginary unit.

The macro I expands to _Imaginary_I, if defined, else to _Complex_I. Thus a complex number
constant (3.0 +4.0i) could be written as either 3.0+4.0*I or 3.0+4.0 *_Complex_I.

The choice of ’I’ instead of ’i’ for the imaginary unit was because of the widespread use of
the identifier ’i’ for other purposes. A program can use a different identifier (for example, ’z’)
for the imaginary unit by undefining ’I’ and defining ’z’ as follows:

#include <complex.h>
#undef I
#define z _Imaginary_z

Annex G, which is marked informative, specifies complex arithmetic intended to be compatible
with the IEC 60559: 1989 standard real floating-point arithmetic, This annex was designated as
informative because of insufficient prior art for normative status. An implementation claiming
such conformance should define _ _STDC_IEC_559_COMPLEX to be 1.

The pragma STDC CX_LIMITED_RANGE can be used to indicate (ON) that the usual

278 A Source Book from The Open Group (2010)

ISO C Migration Complex Numbers

mathematical formulas for complex arithmetic may be used. Such formulas are problematic
because of overflow, underflow, and handling of infinities.

The following new functions relate to complex arithmetic.

14.9.1 Trigonometric Functions

The complex arc cosine functions compute the complex arc cosine of z, with branch cuts outside
the interval [−1,+1] along the real axis.

double complex cacos(double complex z);
float complex cacosf(float complex z);
long double complex cacosl(long double complex z);

The complex arc sine functions compute the complex arc sine of z, with branch cuts outside the
interval [−1,+1] along the real axis.

double complex casin(double complex z);
float complex casinf(float complex z);
long double complex casinl(long double complex z);

The complex arc tangent functions compute the complex arc tangent of z, with branch cuts
outside the interval [−i,+i] along the imaginary axis.

double complex catan(double complex z);
float complex catanf(float complex z);
long double complex catanl(long double complex z);

The complex cosine functions compute the complex cosine of z.

double complex ccos(double complex z);
float complex ccosf(float complex z);
long double complex ccosl(long double complex z);

The complex sine functions compute the complex sine of z.

double complex csin(double complex z);
float complex csinf(float complex z);
long double complex csinl(long double complex z);

The complex tangent functions compute the complex tangent of z.

double complex ctan(double complex z);
float complex ctanf(float complex z);
long double complex ctanl(long double complex z);

14.9.2 Hyperbolic Functions

The complex arc hyperbolic cosine functions compute the complex arc hyperbolic cosine of z,
with a branch cut at values less than 1 along the real axis.

double complex cacosh(double complex z);
float complex cacoshf(float complex z);
long double complex cacoshl(long double complex z);

The complex arc hyperbolic sine functions compute the complex arc hyperbolic sine of z, with
branch cuts outside the interval [−i,+i] along the imaginary axis.

The Authorized Guide to the Single UNIX Specification, Version 4 279

Complex Numbers ISO C Migration

double complex casinh(double complex z);
float complex casinhf(float complex z);
long double complex casinhl(long double complex z);

The complex arc hyperbolic tangent functions compute the complex arc hyperbolic tangent of z,
with branch cuts outside the interval [−1,+1] along the real axis.

double complex catanh(double complex z);
float complex catanhf(float complex z);
long double complex catanhl(long double complex z);

The complex hyperbolic cosine functions compute the complex hyperbolic cosine of z.

double complex ccosh(double complex z);
float complex ccoshf(float complex z);
long double complex ccoshl(long double complex z);

The complex hyperbolic sine functions compute the complex hyperbolic sine of z.

double complex csinh(double complex z);
float complex csinhf(float complex z);
long double complex csinhl(long double complex z);

The complex hyperbolic tangent functions compute the complex hyperbolic tangent of z.

double complex ctanh(double complex z);
float complex ctanhf(float complex z);
long double complex ctanhl(long double complex z);

14.9.3 Exponential and Logarithmic Functions

The complex exponential functions compute the complex base-e exponential of z.

double complex cexp(double complex z);
float complex cexpf(float complex z);
long double complex cexpl(long double complex z);

The complex natural logarithm functions compute the complex natural logarithm of z, with a
branch cut along the negative real axis.

double complex clog(double complex z);
float complex clogf(float complex z);
long double complex clogl(long double complex z);

14.9.4 Power and Absolute-Value Functions

The complex absolute value functions compute the modulus of x.

double complex cabs(double complex x);
float complex cabsf(float complex x);
long double complex cabsl(long double complex x);

The complex power functions compute the complex power function x**y, with a branch cut for
the first parameter along the negative real axis.

double complex cpow(double complex x, double complex y);
float complex cpowf(float complex x, float complex y);

280 A Source Book from The Open Group (2010)

ISO C Migration Complex Numbers

long double complex cpowl(long double complex x,
long double complex y);

The complex square root functions compute the complex square root of z, with a branch cut
along the negative real axis.

double complex csqrt(double complex z);
float complex csqrtf(float complex z);
long double complex csqrtl(long double complex z);

14.9.5 Manipulation Functions

The complex argument functions compute the argument of z, with a branch cut along the
negative real axis.

double carg(double complex z);
float cargf(float complex z);
long double cargl(long double complex z);

The complex imaginary functions compute the imaginary part of z.

double cimag(double complex z);
float cimagf(float complex z);
long double cimagl(long double complex z);

The complex conjugate functions compute the complex conjugate of z, by reversing the sign of
its imaginary part.

double complex conj(double complex z);
float complex conjf(float complex z);
long double complex conjl(long double complex z);

The complex projection functions compute a projection of z onto the Riemann sphere.

double complex cproj(double complex z);
float complex cprojf(float complex z);
long double complex cprojl(long double complex z);

The complex real functions compute the real part of z.

double creal(double complex z);
float crealf(float complex z);
long double creall(long double complex z);

Note that no errors are defined for any of the above functions.

The Authorized Guide to the Single UNIX Specification, Version 4 281

Other Mathematical Changes ISO C Migration

14.10 Other Mathematical Changes

The standard extended the mathematical support via <math.h> by providing versions of
functions to support float and long double as well as the existing double floating type functions.

The functions ecvt(), fcvt(), and gcvt() were dropped from the standard since their capability is
available using the sprintf() function.

The pragma STDC FP_CONTACT indicates to an implementation whether it is allowed (ON) or
disallowed (OFF) to contract expressions; that is, evaluated as though an expression is an atomic
operation, thereby omitting certain rounding errors.

The macro NAN is defined only if an implementation supports quiet NaNs.

14.10.1 Classification Macros

The following are defined for use with classification macros:

FP_NAN The floating-point number x is ‘‘Not a Number’’.

FP_INFINITE The value of the number is either plus or minus infinity.

FP_ZERO The value of the number is either plus or minus zero.

FP_SUBNORMAL The number is in denormalized format.

FP_NORMAL There is nothing special about the number.

The macro fpclassify() classifies its argument as either NaN, infinite, normal, subnormal, zero, or
into another implementation-defined category.

int fpclassify(real-floating x);

The macro isfinite() determines whether its argument has a finite value (zero, subnormal, or
normal, and not infinite or NaN).

int isfinite(real-floating x);

The macro isinf() determines whether its argument value is an infinity (positive or negative).

int isinf(real-floating x);

The macro isnam() determines whether its argument value is a NaN.

int isnan(real-floating x);

The macro isnormal() determines whether its argument value is normal (neither zero,
subnormal, infinite, nor NaN).

int isnormal(real-floating x);

The macro signbit() determines whether the sign of its argument value is negative.

int signbit(real-floating x);

282 A Source Book from The Open Group (2010)

ISO C Migration Other Mathematical Changes

14.10.2 Trigonometric Functions

The following functions compute the arc cosine, arc sin, and arctan of x, respectively:

float acosf(float x);
long double acosl(long double x);
float asinf(float x);
long double asinl(long double x);
long double tanl(long double x);

The following functions compute the arc tangent of y/x:

float atan2f(float y, float x);
long double atan2l(long double y, long double x);

The following functions compute the cosine, sin, and tangent of x, respectively:

float cosf(float x);
long double cosl(long double x);
float sinf(float x);
long double sinl(long double x);
float tanf(float x);
long double tanl(long double x);

14.10.3 Hyperbolic Functions

The following functions compute the arc hyperbolic cosine of x:

float acoshf(float x);
long double acoshl(long double x);

The following functions compute the arc hyperbolic sine of x:

float asinhf(float x);
long double asinhl(long double x);

The following functions compute the arc hyperbolic tangent of x:

float atanhf(float x);
long double atanhl(long double x);

The following functions compute the hyperbolic cosine of x:

float coshf(float x);
long double coshl(long double x);

The following functions compute the hyperbolic sine of x:

float sinhf(float x);
long double sinhl(long double x);

The following functions compute the hyperbolic tangent of x:

float tanhf(float x);
long double tanhl(long double x);

The Authorized Guide to the Single UNIX Specification, Version 4 283

Other Mathematical Changes ISO C Migration

14.10.4 Exponential and Logarithmic Functions

The following functions compute the base-e exponential of x:

float expf(float x);
long double expl(long double x);

The following functions compute the base-2 exponential of x:

double exp2(double x);
float exp2f(float x);
long double exp2l(long double x);

The following functions compute the base-e exponential of (x−1):

float expm1f(float x);
long double expm1l(long double x);

The following functions break a floating-point number into a normalized fraction and an
integral power of 2:

float frexpf(float value, int *exp);
long double frexpl(long double value, int *exp);

The following functions extract the exponent of x:

int ilogbf(float x);
int ilogbl(long double x);

The following functions multiply a floating-point number by an integral power of 2:

float ldexpf(float x, int exp);
long double ldexpl(long double x, int exp);

The following functions compute the natural logarithm of x:

float logf(float x);
long double logl(long double x);

The following functions compute the base-10 logarithm of x:

float log10f(float x);
long double log10l(long double x);

The following functions compute the natural logarithm of (x+1):

float log1pf(float x);
long double log1pl(long double x);

The following functions compute the base-2 logarithm of x:

double log2(double x);
float log2f(float x);
long double log2l(long double x);

The following functions extract the exponent of x:

float logbf(float x);
long double logbl(long double x);

The following functions break x into integral and fractional parts:

float modff(float x, float *iptr);
long double modfl(long double x, long double *iptr);

284 A Source Book from The Open Group (2010)

ISO C Migration Other Mathematical Changes

The following functions compute x*FLT_RADIX**n efficiently:

double scalbn(double x, int n);
float scalbnf(float x, int n);
long double scalbnl(long double x, int n);
double scalbln(double x, long int n);
float scalblnf(float x, long int n);
long double scalblnl(long double x, long int n);

The following functions compute the real cube root of x:

double cbrt(double x);
float cbrtf(float x);
long double cbrtl(long double x);

The following functions compute the absolute value of x:

float fabsf(float x);
long double fabsl(long double x);

The following functions compute the square root of the sum of the squares of x and y:

float hypotf(float x, float y);
long double hypotl(long double x, long double y);

The following functions compute x raised to the power of y:

float powf(float x, float y);
long double powl(long double x, long double y);

The following functions compute the non-negative square root of x:

float sqrtf(float x);
long double sqrtl(long double x);

The following functions compute the error function of x:

float erff(float x);
long double erfl(long double x);

The following functions compute the natural logarithm of the absolute value of the gamma
function of x:

float lgammaf(float x);
long double lgammal(long double x);

The following functions compute the (true) gamma function of x:

double tgamma(double x);
float tgammaf(float x);
long double tgammal(long double x);

The Authorized Guide to the Single UNIX Specification, Version 4 285

Other Mathematical Changes ISO C Migration

14.10.5 Nearest Integer Functions

The following functions compute the smallest integer value not less than x:

float ceilf(float x);
long double ceill(long double x);

The following functions compute the largest integer value not greater than x:

float floorf(float x);
long double floorl(long double x);

The following functions round x to an integer value in floating-point format, using the current
rounding direction and without raising the inexact floating-point exception:

double nearbyint(double x);
float nearbyintf(float x);
long double nearbyintl(long double x);

The following functions round x to an integer value in floating-point format, using the current
rounding direction and may raise the inexact floating-point exception if the result differs in
value from the argument:

float rintf(float x);
long double rintl(long double x);

The following functions round x to the nearest integer value, rounding according to the current
rounding direction:

long int lrint(double x);
long int lrintf(float x);
long int lrintl(long double x);
long long int llrint(double x);
long long int llrintf(float x);
long long int llrintl(long double x);

The following functions round x to the nearest integer value in floating-point format, rounding
halfway cases away from zero, regardless of the current rounding direction:

double round(double x);
float roundf(float x);
long double roundl(long double x);

The following functions round x to the nearest integer value, rounding halfway cases away from
zero, regardless of the current rounding direction:

long int lround(double x);
long int lroundf(float x);
long int lroundl(long double x);
long long int llround(double x);
long long int llroundf(float x);
long long int llroundl(long double x);

The following functions round x to the integer value, in floating format, nearest to but no larger
in magnitude than x:

double trunc(double x);
float truncf(float x);
long double truncl(long double x);

286 A Source Book from The Open Group (2010)

ISO C Migration Other Mathematical Changes

14.10.6 Remainder Functions

The following functions compute the floating-point remainder of x/y:

float fmodf(float x, float y);
long double fmodl(long double x, long double y);

The following functions compute the IEC 60559: 1989 standard remainder x REM y:

float remainderf(float x, float y);
long double remainderl(long double x, long double y);

The following functions shall compute the same remainder as the remainder family of functions,
but in a different manner:

double remquo(double x, double y, int *quo);
float remquof(float x, float y, int *quo);
long double remquol(long double x, long double y, int *quo);

14.10.7 Manipulation Functions

The following functions produce a value with the magnitude of and the sign of y:

double copysign(double x, double y);
float copysignf(float x, float y);
long double copysignl(long double x, long double y);

The following functions return a quiet NaN, if available, with content indicated by tagp:

double nan(const char *tagp);
float nanf(const char *tagp);
long double nanl(const char *tagp);

The following functions determine the next representable value:

float nextafterf(float x, float y);
long double nextafterl(long double x, long double y);

The following functions are equivalent to the nextafter functions, except that the second
parameter has type long double and the functions return y converted to the type of the function
if x equals y:

double nexttoward(double x, long double y);
float nexttowardf(float x, long double y);
long double nexttowardl(long double x, long double y);

The following functions determine the positive difference between their arguments:

double fdim(double x, double y);
float fdimf(float x, float y);
long double fdiml(long double x, long double y);

The following functions determine the maximum numeric value of their arguments:

double fmax(double x, double y);
float fmaxf(float x, float y);
long double fmaxl(long double x, long double y);

If the optional macros FP_FAST_FMA, FP_FAST_FMAF, and FP_FAST_FMAL are defined, it
indicates that the corresponding fma() function executes at least as fast as a multiply and an add

The Authorized Guide to the Single UNIX Specification, Version 4 287

Other Mathematical Changes ISO C Migration

of double operands.

The following functions determine the minimum numeric value of their arguments:

double fmin(double x, double y);
float fminf(float x, float y);
long double fminl(long double x, long double y);

The following functions compute (x*y)+z, rounded as one ternary operation:

double fma(double x, double y, double z);
float fmaf(float x, float y, float z);
long double fmal(long double x, long double y,

long double z);

14.10.8 Comparison Macros

The isgreater() macro tests whether x is greater than y.

int isgreater(real-floating x, real-floating y);

The isgreaterequal() macro tests whether x is greater than or equal to y.

int isgreaterequal(real-floating x, real-floating y);

The isless() macro tests whether x is less than y.

int isless(real-floating x, real-floating y);

The islessequal() macro tests whether x is less than or equal to y.

int islessequal(real-floating x, real-floating y);

The islessgreater() macro tests whether x is less than or greater than y.

int islessgreater(real-floating x, real-floating y);

The isunordered() macro tests whether x and y are unordered.

int isunordered(real-floating x, real-floating y);

Note: Annex F (normative) was added to specify the IEC 60559: 1989 standard floating-point
arithmetic. An implementation that defines _ _STDC_IEC_559_ _ must conform to the
specification detailed in this annex.

288 A Source Book from The Open Group (2010)

ISO C Migration Floating-Point Environment Support

14.11 Floating-Point Environment Support

The header <fenv.h> declares the types, and defines the macros and functions that support
access to an implementation’s floating-point environment.

Two types are declared:

fenv_t Represents the entire floating-point environment.

fexcept_t Represents the collective floating-point status flags.

The pragma directive has three reserved forms, all starting with the preprocessor token STDC.
These are used to specify certain characteristics of the floating-point support to comply with the
IEC 60559: 1989 standard.

The pragma STDC FENV_ACCESS provides the means of informing an implementation when
a program might access the floating-point environment.

For example:

double a;
#pragma STDC FENV_ACCESS ON
a = 1.0 + 2.0;
#pragma STDC FENV_ACCESS OFF

14.11.1 Exceptions

The following function clears the supported floating-point exceptions:

void feclearexcept(int excepts);

The following function stores an implementation-dependent representation of the states of the
floating-point status flags:

void fegetexceptflag(fexcept_t *flagp, int excepts);

The following function raises the supported floating-point exceptions represented by its
argument:

void feraiseexcept(int excepts);

The following function sets the floating-point status flags:

void fesetexceptflag(const fexcept_t *flagp, int excepts);

The following function tests which of a specified subset of the floating-point exception flags are
currently set:

int fetestexcept(int excepts);

Each of the following floating-point exception macros is defined if an implementation supports
these functions:

FE_DIVBYZERO
FE_INEXACT
FE_INVALID
FE_OVERFLOW
FE_UNDERFLOW
FE_ALL_EXCEPT (Bitwise OR of all the other macros.)

Additional implementation-defined floating-point exceptions, with macro definitions beginning

The Authorized Guide to the Single UNIX Specification, Version 4 289

Floating-Point Environment Support ISO C Migration

with FE_ and an uppercase letter, may also be defined by an implementation.

14.11.2 Rounding

The following functions respectively set and return the current rounding direction:

int fesetround(int round);
int fegetround(void);

Each of the following floating-point macros is defined if an implementation supports these
functions:

FE_DOWNWARD
FE_TONEAREST
FE_TOWARDZERO
FE_UPWARD

Additional implementation-defined rounding directions, with macro definitions beginning with
FE_ and an uppercase letter, may also be defined by an implementation.

14.11.3 Environment

The following functions respectively set and return the floating-point environment function:

void fesetenv(const fenv_t *envp);
void fegetenv(fenv_t *envp);

The following function saves the currently raised floating-point exception(s), installs the
floating-point environment represented by the object pointed to by envp, and then raises the
saved floating-point exception(s):

void feupdateenv(const fenv_t *envp);

The following function saves the current floating-point environment in the object pointed to by
envp, clears the floating-point status flags, and then installs a non-stop (continue on floating-
point exceptions) mode, if available, for all floating-point exceptions:

int feholdexcept(fenv_t *envp);

The macro FE_DFL_ENV represents the default floating-point environment; that is, the one
installed at program startup. It can be used as an argument with the above functions and is of
type *const fenv_t.

290 A Source Book from The Open Group (2010)

ISO C Migration Type-Generic Math

14.12 Type-Generic Math

Type-generic macros may enable the writing of more portable code, and reduce need for casting
and suffixing when porting applications to new platforms.

The header <tgmath.h> includes the headers <math.h> and <complex.h> and defines numerous
type-generic macros. Except for modf , there is a type-generic macro for each of the functions in
<math.h> and <complex.h> that do not have an ’f’ (float) or ’l’ (long double) suffix and
have one or more parameters whose corresponding real type is double.

Such parameters are called generic parameters.

Use of a type-generic macro invokes a function whose corresponding real type and type domain
are determined by the arguments for the generic parameters. The real type is determined as
follows:

1. First, if any argument for generic parameters is a long double, the real type is long
double.

2. Otherwise, if any argument for generic parameters is a double or an integer type, the real
type is double.

3. Otherwise, the real type is float.

Type-generic macros that accept complex arguments also accept imaginary arguments. If an
argument is imaginary, the macro expands to an expression whose type is real, imaginary, or
complex, as appropriate for the particular function.

14.12.1 Unsuffixed Functions With a C-Prefixed Counterpart

For each unsuffixed function in <math.h> for which there is a function in <complex.h> with the
same name except for a ’c’ prefix, the corresponding type-generic macro for both functions has
the same name as the function in <math.h>.

For example, the type-generic macro for tan() and ctan() is tan.

If at least one argument for a generic parameter is complex, then use of the macro invokes a
complex function; otherwise, a real function is invoked.

14.12.2 Unsuffixed Functions Without a C-Prefixed Counterpart

For each unsuffixed function in <math.h> for which there is not a function in <complex.h> with
the same name but having a ’c’ prefix, the corresponding type-generic macro for both
functions has the same name as the function in <math.h>. If all arguments for generic
parameters are real, then use of the macro invokes a real function; otherwise, use of the macro
results in undefined behavior. Examples of such functions include fdim() and lround().

For each unsuffixed function in <complex.h> for which there is not a function in <math.h> with
the same name but without a ’c’ prefix, the corresponding type-generic macro for both
functions has the same name as the function in <complex.h>. Use of the macro with any real or
complex argument invokes a complex function.

The Authorized Guide to the Single UNIX Specification, Version 4 291

Other Library Changes ISO C Migration

14.13 Other Library Changes

A number of new functions were added to the standard, prototypes for many functions now
contain the new keyword restrict as part of some parameter declarations, and a number of
functions had their definition clarified or extended.

atoll()

A numeric conversion function for the conversion of a string to a long long int representation.

long long int atoll(const char *nptr);

_Exit()

This function causes normal program termination to occur and control to be returned to the host
environment without triggering signals or atexit() registered functions.

This function name (rather than _exit()) was chosen to avoid potential conflict with existing
practice.

fpos_t

The description of fpos_t was changed to exclude array type objects.

isblank()

This function tests whether c is a character of class blank in a program’s current locale.

int isblank(int c);

iswblank()

This function tests whether wc is a wide-character which is a member of the class blank in the
program’s current locale.

int iswblank(wint_t wc);

llabs()

In a similar manner to its counterparts abs() and lals(), this function computes the absolute
value of an integer.

long long int llabs(long long int j);

lldiv()

In a similar manner to its counterparts div() and ldiv(), this function retuns a structure of type
lldiv_t which contains both the quotient and the remainder, each of which is of type long long
int.

lldiv_t lldiv(long long int numer, long long int denom);

292 A Source Book from The Open Group (2010)

ISO C Migration Other Library Changes

localeconv()

The standard added the following members to the lconv structure (defined in <locale.h>) to
assign with long-standing POSIX practice and to permit additional flexibility with
internationally formatted monetary quantities:

char p_cs_precedes Set to 1 or 0 if the currency_symbol respectively precedes or
succeeds the value for a non-negative locally formatted monetary
quantity.

char n_cs_precedes Set to 1 or 0 if the currency_symbol respectively precedes or
succeeds the value for a negative locally formatted monetary
quantity.

char p_sep_by_space Set to a value indicating the separation of the currency_symbol, the
sign string, and the value for a non-negative locally formatted
monetary quantity.

char n_sep_by_space Set to a value indicating the separation of the currency_symbol, the
sign string, and the value for a negative locally formatted monetary
quantity.

char p_sign_posn Set to a value indicating the positioning of the positive_sign for a
non-negative locally formatted monetary quantity.

char n_sign_posn Set to a value indicating the positioning of the negative_sign for a
negative locally formatted monetary quantity.

printf(), fprintf(), sprintf()

New length modifiers were added to the standard:

hh Specifies that a following d, i, o, u, x, or X conversion specifier applies to a signed char or
unsigned char argument; or that a following n conversion specifier applies to a pointer to a
signed char argument. This modifier enables character types to be treated the same as all
other integer types.

ll Added to support the new long long int type. Specifies that a following d, I, o, u, x, or X
conversion specifier applies to a long long int or unsigned long long int argument; or that
a following n conversion specifier applies to a pointer to a long long int argument.

The maximum number of characters that can be produced by any single conversion was
increased from 509 characters (C89) to 4 095 characters.

realloc()

The description of this function was changed to make it clear that the pointed-to object is
deallocated, a new object is allocated, and the content of the new object is the same as that of the
old object up to the lesser of the two sizes.

scanf(), fscanf(), sscanf()

The hh and ll length modifiers (see printf() above) were added.

Also the conversion modifiers a and A were added with A being equivalent to a.

These conversion modifiers match an optionally signed floating-point number, infinity, or NaN,
whose format is the same as expected for the subject sequence of the strtod() function. The
corresponding argument shall be a pointer to floating.

The behavior of the sscanf() function on encountering the end of a string has been clarified.

The Authorized Guide to the Single UNIX Specification, Version 4 293

Other Library Changes ISO C Migration

setvbuf()

The function prototype was changed to include the restrict type qualifier:

int setvbuf(FILE *restrict stream, char *restrict buf,
int type, size_t size);

In previous revisions of the standard it was not clear about what, if anything, size means when
buf is a null pointer. The standard now warns that size might not be ignored, so portable
programs should supply a reasonable value.

snprintf()

This function was added to the standard to address the problem of sprintf() potentially
overrunning an output buffer. It is equivalent in functionality to sprintf() except that it performs
bounds checking on the output array. Extra characters are discarded and a null character is
written at the end of the characters actually written to the array.

strftime()

The definition of this function was changed to incorporate additional conversion specifiers
defined in the IEEE Std 1003.1c-1995, including %C, %D, %e, %F, %g, %G, %h, %n, %r, %R, %t, %T,
%u, and %V, as well as the E and O modifiers.

strtod(), strtof(), strtold ()

The following two functions were added to the standard:

float strtof(const char *restrict nptr,
char **restrict endptr);

long double strtold (const char *restrict nptr,
char **restrict endptr);

In a similar manner to their counterpart, the strtod() function, these functions convert the initial
portion of the string pointed to by nptr to float and long double representation, respectively.
Support for subject sequences relating to floating-point (NaN, INF, and so on) was also added.

strtoll(), strtoull()

The following two functions were added to the standard:

long long int strtoll(const char *restrict nptr,
char **restrict endptr, int base);

unsigned long int strtoull(const char *restrict nptr,
char **restrict endptr, int basef5);

In a similar manner to their counterparts, the strtol() and strtoul() functions, these functions
convert the initial portion of the string pointed to by nptr to long long int and unsigned long int
representation, respectively.

294 A Source Book from The Open Group (2010)

ISO C Migration Other Library Changes

tmpnam()

The previous standard had a serious flaw regarding this function. If the function were called
fewer than {TMP_MAX} times but was unable to generate a suitable string because every
potential string named an existing file, there was no way to report failure and no undefined
behavior; hence there was no option other than to never return.

This standard resolved this issue by allowing the function to return a null pointer when it cannot
generate a suitable string and by specifying that {TMP_MAX} is the number of potential strings,
any or all of which may name existing files and thus not be suitable return values.

Note: This is a quiet change in the standard. Programs that call this function without checking for a
null return value may produce undefined behavior.

ungetc()

The standard deprecated the use of this function on a binary stream at the beginning of the file.

vfscanf()

The following functions are functionally the same as scanf(), fscanf(), and sscanf() respectively,
except that instead of being called with a variable number of arguments, they are called with an
argument list:

int vscanf(const char *restrict format, va_list arg);
int vfscanf(FILE *restrict stream,

const char *restrict format, va_list arg);
int vsscanf(const char *restrict s,

const char *restrict format, va_list arg);

vfwscanf()

The following functions are functionally the same as fwscanf(), swscanf(), and wscanf()
respectively, except that instead of being called with a variable number of arguments, they are
called with an argument list:

int vfwscanf(FILE *restrict stream,
const wchar_t *restrict format, va_list arg);

int vswscanf(const wchar_t *restrict s,
const wchar_t *restrict format, va_list arg);

int vwscanf(const wchar_t *restrict format, va_list arg);

14.13.1 Wide-String Numeric Conversion Functions

The following functions were added to the existing wide-string numeric conversion functions:

float wcstof(const wchar_t *restrict nptr,
wchar_t **restrict endptr);

long double wcstold(const wchar_t *restrict nptr,
wchar_t **restrict endptr);

long long int wcstoll(const wchar_t *restrict nptr,
wchar_t **restrict endptr, int base);

long long int wcstoull(const wchar_t *restrict nptr,
wchar_t **restrict endptr, int base);

The Authorized Guide to the Single UNIX Specification, Version 4 295

Annexes ISO C Migration

14.14 Annexes

A number of new normative and informative annexes were added to the standard and some
exiting annexes were modified.

Annexes A, B, and E were modified to include the new keywords, universal character names,
types, implementation limits, macros and functions, and other changes to the C language.

Annex F (normative) was added to specify the IEC 60559: 1989 standard floating-point
arithmetic. An implementation that defines _ _STDC_IEC_559_ _ must conform to the
specification detailed in this annex.

Annex G (informative) was added to specify recommended IEC 60559: 1989 standard-
compatible complex arithmetic. An implementation that defines
_ _STDC_IEC_559_COMPLEX_ _ should conform to the specification detailed in this annex. It is
non-normative because there were few existing implementations at the time this standard was
approved.

Annex H (informative) describes the extent of support in this standard for language-
independent arithmetic as specified in the ISO/IEC 10967-1: 1994 standard. This annex was
added, however, because all programming languages covered by ISO/IEC JTC1 SC22 standards
are expected to review the ISO/IEC 10967-1: 1994 standard and incorporate and further define
the binding between that standard and each programming language.

296 A Source Book from The Open Group (2010)

Index

#line ...272
_exit ...1
_Exit ...292
_setjmp ..1
absolute-value function..280
acosf ...4
acoshf ..4
acoshl ..4
acosl ...4
address information..46
ADVANCED REALTIME ..17, 104-109, 115, 254
ADVANCED REALTIME THREADS...126
anonymous aggregate ..268
argument macros ...273
arithmetic ..272
array declaration ...270
array type compatibility...270
asctime_r ...7
asinf ...7
asinhf ...7
asinhl ...7
asinl ...7
atan2f ...8
atan2l ...8
atanf ...8
atanhf ..8
atanhl ..8
atanl ...8
atoll ..9, 292
block ..271
Boolean ...266
cabsf ...10
cabsl ...10
cacosf ...10
cacoshf ..10
cacoshl ...10
cacosl ...10
cargf ...11
cargl ...11
case-sensitive identifiers ..272
casinf ..11
casinhf ...11
casinhl ...11
casinl ..11
catanf ...12
catanhf ...12
catanhl ...12

The Authorized Guide to the Single UNIX Specification, Version 4 297

Index

catanl ...12
cbrtf ...13
cbrtl ..13
ccosf ...13
ccoshf ..13
ccoshl ...13
ccosl ...13
ceilf ..14
ceill ..14
cexpf ..14
cexpl ..14
cimagf ..16
cimagl ..16
classification macro...282
clock_gettime ...17
clock_settime ..17
clogf ...18
clogl ...18
comment ...271
comparison macro...288
complex number..278
compound literal ...268
conjf ...19
conjl ...19
copysignf ..20
copysignl ..20
cosf ...20
coshf ..20
coshl ..20
cosl ...20
cpowf ...21
cpowl ...21
cprojf ...21
cprojl ..21
crealf ..21
creall ..21
CRYPT ...22, 28, 155
csinf ...22
csinhf ...22
csinhl ...22
csinl ...22
csqrtf ..22
csqrtl ..22
ctanf ...23
ctanhf ...23
ctanhl ...23
ctanl ...23
ctime_r ..23
daylight ...183
DBM ..24
dbm_close ...24
dbm_delete ...24

298 A Source Book from The Open Group (2010)

Index

dbm_error ...24
dbm_fetch ...24
dbm_firstkey ..24
dbm_nextkey ...24
dbm_open ...24
dbm_store...24
decimal integer constant ..268
designated initializer ..268
DIR ..18
dprintf ...45
dup2 ..26
empty argument macros ..273
enumeration specifier ...269
environment ...290
erand48 ...26
erfcf ..30
erfcl ..30
erff ...30
erfl ..30
errno ..271
error descriptions ..54
exact-width integer type ..275
exception ...289
execl ...31
execle ...31
execlp ..31
execv ..31
execve ..31
execvp ...31
exp2f ..32
exp2l ..32
expf ..32
expl ..32
expm1f ..32
expm1l ..32
exponential function ...280, 284
fabsf ...33
fabsl ...33
faccessat ..3
fastest minimum-width integer type ...275
fchmodat ...15
fchownat ...16
fdimf ..35
fdiml ..35
fesetenv ...37
fesetexceptflag ...37
fesetround ...37
fexecve ..31
FE_ALL_EXCEPT ..289
FE_DIVBYZERO ..289
FE_DOWNWARD ...290
FE_INEXACT ...289

The Authorized Guide to the Single UNIX Specification, Version 4 299

Index

FE_INVALID ..289
FE_OVERFLOW ..289
FE_TONEAREST ...290
FE_TOWARDZERO ..290
FE_UNDERFLOW ..289
FE_UPWARD ...290
FIFO ...92
FILE ...17, 34
flexible array member...270
floating-point constant ...272
floating-point environment ...289
floorf ..41
floorl ..41
fmaf ...41
fmal ..41
fmaxf ...42
fmaxl ...42
fminf ..42
fminl ..42
fmodf ...42
fmodl ...42
for statement ..271
fpclassify ...282
fpos_t ...292
fprintf ..293
FP_INFINITE ...282
FP_NAN ...282
FP_NORMAL ..282
FP_SUBNORMAL ...282
FP_ZERO ..282
frexpf ...48
frexpl ...48
fscanf ...293
fseeko ..48
ftello ...51
ftrylockfile ..41
FTW ...100
function

absolute-value ..280
exponential ...280, 284
hyperbolic ...279, 283
logarithmic ...280, 284
manipulation ..281, 287
nearest integer ...286
power ..280
remainder ...287
trigonometric ...279, 283
unsuffixed ...291
wide-string numeric conversion ...295

funlockfile ...41
generic parameter ...291
getaddrinfo ...46

300 A Source Book from The Open Group (2010)

Index

getchar_unlocked ..55
getgrent ...28
getgrgid_r ...57
getgrnam_r ...58
gethostent ...28
getline ..56
getlogin_r ...59
getnetbyaddr ..28
getnetbyname ..28
getnetent ...28
getpmsg ..59
getprotobyname ..29
getprotobynumber ..29
getprotoent ...29
getpwent ...29
getpwnam_r ...61
getpwuid_r ...62
getservbyname ..29
getservbyport ...29
getservent ...29
getutxent ...30
getutxid ...30
getutxline ..30
globfree ...65
gmtime_r ..65
greatest-width integer type..276
hdestroy ..65
header ...274
headers ..243
hexadecimal constant ...272
hsearch ..65
htons ..66
hyperbolic function...279, 283
hypotf ..66
hypotl ..66
identifier ...272
ilogbf ...68
ilogbl ...68
implicit declaration ...269
incomplete array..270
inet_ntoa ...68
inet_pton ...69
inline ..267
integer type ..275

exact-width ...275
fastest minimum-width..275
greatest-width ..276
holding object pointer...276
minimum-width ..275
specified-width limit...277

isalnum_l ..70
isalpha_l ..70

The Authorized Guide to the Single UNIX Specification, Version 4 301

Index

isblank ...292
isblank_l ..71
iscntrl_l ...71
isdigit_l ...72
isfinite ..282
isgraph_l ...72
isgreater ..288
isgreaterequal ...288
isinf ..282
islower_l ...74
isnam ...282
isnormal ..282
ISO C standard ..265
isprint_l ...74
ispunct_l ...75
isspace_l ..75
isupper_l ...75
iswalnum_l ...76
iswalpha_l ..76
iswblank ...292
iswblank_l ..76
iswcntrl_l ..77
iswctype_l ...77
iswdigit_l ..77
iswgraph_l ..78
iswlower_l ..78
iswprint_l ...78
iswpunct_l ..79
iswspace_l ..79
iswupper_l ..79
iswxdigit_l ..80
isxdigit_l ...80
j1 ...80
jn...80
jrand48 ..26
keyword..265
l64a ..2
lcong48 ..26
ldexpf ..82
ldexpl ..82
lfind ...87
lgammaf ..82
lgammal ..82
library ..292
line length...272
linkat ...82
llabs ...81, 292
lldiv ...82, 292
llrintf ..84
llrintl ..84
llroundf ...84
llroundl ...84

302 A Source Book from The Open Group (2010)

Index

localeconv ...293
localtime_r ..84
log10f ...85
log10l ...85
log1pf ..85
log1pl ..85
log2f ...86
log2l ...86
logarithmic function ...280, 284
logbf ..86
logbl ...86
logf ...85
logl ...85
lrand48 ..26
lrintf ...86
lrintl ...86
lroundf ..87
lroundl ..87
lstat ..49
macro...277

comparison ...288
manipulation function..281, 287
mbsnrtowcs ..88
min/max line length...272
minimum-width integer type..275
mkdirat ...91
mkfifoat ...92
mknodat ..92
mkstemp ...91
modff...94
modfl ...94
mq_timedreceive ...96
mq_timedsend ...96
mrand48 ..26
multiplicative operator...269
munlock ..93
munlockall ..93
name information..60
nanf ..98
nanl ..98
nearbyintf ...99
nearbyintl ...99
nearest integer function..286
nextafterf ...100
nextafterl ...100
nexttoward ...100
nexttowardf ..100
nexttowardl ..100
nl_langinfo_l ..101
nrand48 ...26
ntohl ..66
ntohs ..66

The Authorized Guide to the Single UNIX Specification, Version 4 303

Index

openat ...101
opendir ..35
openlog ...19
open_wmemstream ..102
optarg ..60
opterr ...60
optind ..60
optopt ..60
pathconf ..44
posix_spawnattr_init ..107
posix_spawnattr_setflags ...107
posix_spawnattr_setpgroup ..108
posix_spawnattr_setschedparam ..108
posix_spawnattr_setschedpolicy ..108
posix_spawnattr_setsigdefault ..109
posix_spawnattr_setsigmask ...109
posix_spawnp ..106
posix_spawn_file_actions_addopen ...106
posix_spawn_file_actions_init ..107
posix_trace_attr_getcreatetime ..110
posix_trace_attr_getgenversion ..110
posix_trace_attr_getlogfullpolicy ..110
posix_trace_attr_getmaxdatasize ..111
posix_trace_attr_getmaxsystemeventsize ..111
posix_trace_attr_getmaxusereventsize ...111
posix_trace_attr_getname ..110
posix_trace_attr_getstreamfullpolicy ...110
posix_trace_attr_getstreamsize ..111
posix_trace_attr_init ...109
posix_trace_attr_setinherited ..110
posix_trace_attr_setlogfullpolicy ..110
posix_trace_attr_setlogsize ..111
posix_trace_attr_setmaxdatasize ...111
posix_trace_attr_setname ...110
posix_trace_attr_setstreamfullpolicy ..110
posix_trace_attr_setstreamsize ..111
posix_trace_create_withlog ..112
posix_trace_eventid_get_name ...113
posix_trace_eventid_open ..112
posix_trace_eventset_del ..113
posix_trace_eventset_empty ..113
posix_trace_eventset_fill ..113
posix_trace_eventset_ismember ..113
posix_trace_eventtypelist_rewind ..113
posix_trace_flush ...112
posix_trace_get_status ..114
posix_trace_open ...112
posix_trace_rewind ...112
posix_trace_set_filter ..114
posix_trace_shutdown ..112
posix_trace_stop ..115
posix_trace_timedgetnext_event ...114

304 A Source Book from The Open Group (2010)

Index

posix_trace_trid_eventid_open ...113
posix_trace_trygetnext_event ..114
power function ..280
powf ...115
powl ...115
pragma ..273
pread ...141
predefined identifier ...267
predefined macro ..272
printf ...45, 293
process

setting real and effective user IDs...156
psignal ...116
pthread_attr_init ..117
pthread_attr_setdetachstate ...117
pthread_attr_setguardsize ...118
pthread_attr_setinheritsched ...118
pthread_attr_setschedparam ...118
pthread_attr_setschedpolicy ..119
pthread_attr_setscope ...119
pthread_attr_setstack ..120
pthread_attr_setstacksize ...120
pthread_barrierattr_init ...121
pthread_barrierattr_setpshared ..121
pthread_barrier_init ..120
pthread_cleanup_push ...122
pthread_condattr_init ...123
pthread_condattr_setclock ...124
pthread_condattr_setpshared ..124
pthread_cond_init ...122
pthread_cond_signal ..122
pthread_cond_wait ...123
pthread_mutexattr_init ..130
pthread_mutexattr_setprioceiling ..131
pthread_mutexattr_setprotocol ...131
pthread_mutexattr_setpshared ...132
pthread_mutexattr_setrobust ..132
pthread_mutexattr_settype ...133
pthread_mutex_init ..128
PTHREAD_MUTEX_ROBUST ..132
pthread_mutex_setprioceiling ..129
PTHREAD_MUTEX_STALLED ..132
pthread_mutex_trylock ..129
pthread_mutex_unlock ..129
pthread_rwlockattr_init ...136
pthread_rwlockattr_setpshared ..136
pthread_rwlock_init ...134
pthread_rwlock_tryrdlock ...134
pthread_rwlock_wrlock ...135
pthread_setcanceltype ..137
pthread_setconcurrency ...125
pthread_setschedparam ...126

The Authorized Guide to the Single UNIX Specification, Version 4 305

Index

pthread_setspecific ..126
pthread_spin_init ..138
pthread_spin_trylock ..138
pthread_testcancel ..137
putchar_unlocked ...55
putc_unlocked ...55
putpmsg ..139
pututxline ...30
pwrite ..198
random ..69
rand_r ..141
readdir_r ...141
readlinkat ..142
realloc ..293
REALTIME ...34, 93-97, 147-149, 157, 249
REALTIME THREADS ..118-119, 126, 129, 131, 137
regerror ...144
regexec ..144
regfree ...144
remainder function ...287
remainderf ..144
remainderl ..144
remque ..69
remquof ..145
remquol ...145
renameat ...145
rintf ..146
rintl ..146
roundf ...147
rounding ...290
roundl ..147
scalblnf ..147
scalblnl ..147
scalbn ..147
scalbnf ...147
scalbnl ...147
scandir ...6
scanf ..48, 293
sched_get_priority_min ...147
seed48 ..26
select ..116
sem_wait ...151
setgrent ...28
sethostent ..28
setitimer ..59
setlogmask ..19
setnetent ..28
setpriority ...61
setprotoent ..29
setpwent ...29
setrlimit ...62
setservent ..29

306 A Source Book from The Open Group (2010)

Index

setstate ..69
setutxent ...30
setvbuf ..294
sigignore ...160
signbit ...282
signgam ..82
sigpause ..160
sigprocmask ...137
sigrelse ..160
sigset ..160
sigwaitinfo ..163
sinf ...163
sinhf ...163
sinhl ...163
sinl ...163
sizeof ...269
snprintf ...45, 294
source file inclusion ..272
specified-width integer type..277
sprintf ..45, 293
sqrtf ...164
sqrtl ..164
srand ..141
srand48 ..26
srandom ..69
sscanf ...48, 293
stat ...49
statvfs ..50
stderr ...165
stdout ..165
stpcpy ..166
stpncpy ...170
strcasecmp_l ...165
strcoll_l ..166
STREAM ...139
STREAMS ...35, 59, 69, 256
strerror_l ...168
strerror_r ...168
strfmon_l ..168
strftime ..294
strftime_l ...168
string literal ..269
strncasecmp ..165
strncasecmp_l ..165
strndup ...167
strtod ...294
strtof ..171, 294
strtok_r ..172
strtold ..171, 294
strtoll ...172, 294
strtoull ...172, 294
strtoumax ..172

The Authorized Guide to the Single UNIX Specification, Version 4 307

Index

structure member
incomplete array..270

strxfrm_l ...173
swprintf ..53
swscanf ...54
symlinkat ..173
syslog ..19
system interfaces ...1
tanf ...175
tanhf ..175
tanhl ..175
tanl ...175
tfind ...177
tgammaf ..178
tgammal ..178
timer_gettime ...179
timer_settime ...179
tmpnam ..295
TMP_MAX ...295
token pasting..273
tolower_l ...180
toupper_l ..181
towctrans_l ...181
towlower_l ...181
towupper_l ...182
TRACING ..109-115
translation limit ...273
translation-time arithmetic ..272
trigonometric function..279, 283
truncf ...182
truncl ...182
tsearch ...177
ttyname_r ...183
twalk ..177
type ..266
type qualifier..266
type-generic math ...291
tzname ..183
tzset ...183
UCN ..267
UINTn_MAX ...277
ungetc ..295
universal character name ...267
unlinkat ...184
unsuffixed function

with C-prefixed counterpart..291
without C-prefixed counterpart ..291

user ID
real and effective ...156
setting real and effective ..156

utilities ..201
utimensat ..52

308 A Source Book from The Open Group (2010)

Index

utimes ..52
variable length array...270
variadic macro ...273
va_copy ...274
vdprintf ...186
VFS ..258
vfscanf ...295
vfwscanf ..295
vprintf ...186
vscanf ..187
vsnprintf ...186
vsprintf ..186
vsscanf ..187
vswprintf ..187
vswscanf ...187
vwprintf ..187
vwscanf ...187
waitpid ..188
wcpcpy ..190
wcpncpy ...192
wcscasecmp_l ...189
wcscoll_l ...190
wcsncasecmp ...189
wcsncasecmp_l ..189
wcsnlen ...191
wcsnrtombs ..193
wcstof ..194
wcstold ..194
wcstoll ...194
wcstoull ...195
wcstoumax ...194
wcsxfrm_l ...195
wctrans_l ..196
wctype_l ...196
wide-string numeric conversion function ...295
wordfree ...198
wprintf ..53
wscanf ...54
y1 ...199
yn ...199

The Authorized Guide to the Single UNIX Specification, Version 4 309

Index

310 A Source Book from The Open Group (2010)

	MIG_Guide
	11 System Interfaces Migration
	11.1 Introduction
	11.2 System Interfaces

	12 Utilities Migration
	12.1 Introduction
	12.2 Utilities

	13 Headers Migration
	13.1 Introduction
	13.2 Headers

	14 ISO C Migration
	14.1 Introduction
	14.2 Language Changes
	14.2.1 New Keywords
	14.2.2 New Types
	14.2.3 Type Qualifiers
	14.2.4 Boolean
	14.2.5 Universal Character Names
	14.2.6 inline
	14.2.7 Predefined Identifiers
	14.2.8 Compound Literals
	14.2.9 Designated Initializers

	14.3 Decimal Integer Constants
	14.3.1 String Literals

	14.4 Implicit Declarations
	14.4.1 sizeof
	14.4.2 Multiplicative Operators
	14.4.3 Enumeration Specifiers

	14.5 Variable Length Array
	14.5.1 Array Declarations
	14.5.2 Array Type Compatibility
	14.5.3 Incomplete Array Structure Members
	14.5.4 Blocks
	14.5.5 The for Statement
	14.5.6 errno

	14.6 Comments
	14.6.1 Hexadecimal Floating-Point Constants
	14.6.2 Predefined Macros
	14.6.3 Source File Inclusion
	14.6.4 Translation-Time Arithmetic
	14.6.5 Minimum Maximum Line Length
	14.6.6 Case-Sensitive Identifiers
	14.6.7 #line Directive
	14.6.8 Empty Argument Macros
	14.6.9 Pragmas
	14.6.10 Translation Limits
	14.6.11 Token Pasting
	14.6.12 Variadic Macros
	14.6.13 va_copy()

	14.7 Headers
	14.8 Integer Types
	14.8.1 Exact-Width Integer Types
	14.8.2 Minimum-Width Integer Types
	14.8.3 Fastest Minimum-Width Integer Types
	14.8.4 Integer Types Capable of Holding Object Pointers
	14.8.5 Greatest-Width Integer Types
	14.8.6 Limits of Specified-Width Integer Types
	14.8.7 Macros

	14.9 Complex Numbers
	14.9.1 Trigonometric Functions
	14.9.2 Hyperbolic Functions
	14.9.3 Exponential and Logarithmic Functions
	14.9.4 Power and Absolute-Value Functions
	14.9.5 Manipulation Functions

	14.10 Other Mathematical Changes
	14.10.1 Classification Macros
	14.10.2 Trigonometric Functions
	14.10.3 Hyperbolic Functions
	14.10.4 Exponential and Logarithmic Functions
	14.10.5 Nearest Integer Functions
	14.10.6 Remainder Functions
	14.10.7 Manipulation Functions
	14.10.8 Comparison Macros

	14.11 Floating-Point Environment Support
	14.11.1 Exceptions
	14.11.2 Rounding
	14.11.3 Environment

	14.12 Type-Generic Math
	14.12.1 Unsuffixed Functions With a C-Prefixed Counterpart
	14.12.2 Unsuffixed Functions Without a C-Prefixed Counterpart

	14.13 Other Library Changes
	14.13.1 Wide-String Numeric Conversion Functions

	14.14 Annexes

